Instability of the hedgehog shape for the octet baryon in the chiral quark soliton model
Akiyama, Satoru; Futami, Yasuhiko
2003-01-01
In this paper the stability of the hedgehog shape of the chiral soliton is studied for the octet baryon with the SU(3) chiral quark soliton model. The strangeness degrees of freedom are treated by a simplified bound-state approach, which omits the locality of the kaon wave function. The mean field approximation for the flavor rotation is applied to the model. The classical soliton changes shape according to the strangeness. The baryon appears as a rotational band of the combined system of the...
Approximating chiral quark models with linear σ-models
International Nuclear Information System (INIS)
Broniowski, Wojciech; Golli, Bojan
2003-01-01
We study the approximation of chiral quark models with simpler models, obtained via gradient expansion. The resulting Lagrangian of the type of the linear σ-model contains, at the lowest level of the gradient-expanded meson action, an additional term of the form ((1)/(2))A(σ∂ μ σ+π∂ μ π) 2 . We investigate the dynamical consequences of this term and its relevance to the phenomenology of the soliton models of the nucleon. It is found that the inclusion of the new term allows for a more efficient approximation of the underlying quark theory, especially in those cases where dynamics allows for a large deviation of the chiral fields from the chiral circle, such as in quark models with non-local regulators. This is of practical importance, since the σ-models with valence quarks only are technically much easier to treat and simpler to solve than the quark models with the full-fledged Dirac sea
The half-skyrmion phase in a chiral-quark model
International Nuclear Information System (INIS)
Mantovani Sarti, Valentina; Vento, Vicente
2014-01-01
The Chiral Dilaton Model, where baryons arise as non-topological solitons built from the interaction of quarks and chiral mesons, shows in the high density low temperature regime a two phase scenario in the nuclear matter phase diagram. Dense soliton matter described by the Wigner–Seitz approximation generates a periodic potential in terms of the sigma and pion fields that leads to the formation of a band structure. The analysis up to three times nuclear matter density shows that soliton matter undergoes two separate phase transitions: a delocalization of the baryon number density leading to B=1/2 structures, as in skyrmion matter, at moderate densities, and quark deconfinement at larger densities. This description fits well into the so-called quarkyonic phase where, before deconfinement, nuclear matter should undergo structural changes involving the restoration of fundamental symmetries of QCD
Silva, António; Urbano, Diana; Kim, Hyun-Chul
2018-02-01
We investigate the flavor decomposition of the electromagnetic form factors of the nucleon, based on the chiral quark-soliton model (χQSM) with symmetry-conserving quantization. We consider the rotational 1/N_c and linear strange-quark mass (ms) corrections. We discuss the results of the flavor-decomposed electromagnetic form factors in comparison with the recent experimental data. In order to see the effects of the strange quark, we compare the SU(3) results with those of SU(2). Finally, we discuss the transverse charge densities for both unpolarized and polarized nucleons. The transverse charge density inside a neutron turns out to be negative in the vicinity of the center within the SU(3) χQSM, which can be explained by the contribution of the strange quark.
Top quark soliton and its anomalous chromomagnetic moment
International Nuclear Information System (INIS)
Berger, J.; Blotz, A.; Kim, H.; Goeke, K.
1996-01-01
We show that under the assumption of dynamical symmetry breaking of electroweak interactions by a top quark condensate, motivated by the top mode standard model, the top quark in this effective theory can be considered then as a chiral color soliton. This is realized in an effective four-fermion interaction with chiral SU(3) c as well as SU(2) L circle-times U Y (1) symmetry. In the pure top quark sector the soliton consists of a top valence quark and a Dirac sea of top quarks and top antiquarks coupled to a color octet of Goldstone pions. The mass spectra, isoscalar quadratic radii, and the anomalous chromomagnetic moment because of a nontrivial color form factor are calculated with zero and finite current top quark masses and effects at the hadron colliders are discussed. The anomalous chromomagnetic moment turns out to have a value consistent with the top quark production rates of the D0 and CDF measurements. copyright 1996 The American Physical Society
Baryons as solitonic solutions of the chiral sigma model
International Nuclear Information System (INIS)
Bentz, W.; Hartmann, J.; Beck, F.
1996-01-01
Self-consistent solitonic solutions with baryon number one are obtained in the chiral quark sigma model. The translational invariant vacuum is stabilized by a Landau ghost subtraction procedure based on the requirement of the Kaellacute en-Lehmann (KL) representation for the meson propagators. The connection of this ghost free model (KL model) to the more popular Nambu-Jona-Lasinio (NJL) model is discussed in detail. copyright 1996 The American Physical Society
International Nuclear Information System (INIS)
Wakamatsu, M.
2003-01-01
Theoretical predictions are given for the light-flavor sea-quark distributions in the nucleon including the strange quark ones on the basis of the flavor SU(3) version of the chiral quark soliton model. Careful account is taken of the SU(3) symmetry breaking effects due to the mass difference Δm s between the strange and nonstrange quarks, which is the only one parameter necessary for the flavor SU(3) generalization of the model. A particular emphasis of study is put on the light-flavor sea-quark asymmetry as exemplified by the observables d-bar(x)-u-bar(x),d-bar(x)/u-bar(x),Δu-bar(x)-Δd-bar(x) as well as on the particle-antiparticle asymmetry of the strange quark distributions represented by s(x)-s-bar(x),s(x)/s-bar(x),Δs(x)-Δs-bar(x) etc. As for the unpolarized sea-quark distributions, the predictions of the model seem qualitatively consistent with the available phenomenological information provided by the NMC data for d-bar(x)-u-bar(x), the E866 data for d-bar(x)/u-bar(x), the CCFR data and the fit of Barone et al. for s(x)/s-bar(x), etc. The model is shown to give several unique predictions also for the spin-dependent sea-quark distribution, such that Δs(x)<<Δs-bar(x) < or approx. 0 and Δd-bar(x)<0<Δu-bar(x), although the verification of these predictions must await more elaborate experimental investigations in the near future
Topological solitons of the Nambu-Jona-Lasinio model
International Nuclear Information System (INIS)
Reinhardt, H.; Wuensch, R.
1989-06-01
The baryon number one soliton solution of the Nambu-Jona-Lasinio model are found numerically in the mean-field approximation with full inclusion of the Dirac sea using the proper-time regularization for the underlying fermion determinant (quark loop). Explicit breaking of chiral symmetry is included by bare (current) quark masses. The obtained lowest-energy chiral soliton solutions with baryon number one carry winding number one. Fitting the parameters of the model from low-energy pion data the classical energies of these solitons are of the order of the nucleon mass. (orig.)
Sensitivity to properties of the phi-meson in the nucleon structure in the chiral soliton model
Energy Technology Data Exchange (ETDEWEB)
Mukhopadhyay, N.C.; Zhang, L. [Rensselaer Polytechnic Inst., Troy, NY (United States)
1994-04-01
The influence of the {phi}-meson on the nucleon properties in the chiral soliton model is discussed. Properties of the {phi}-meson and its photo- and electroproduction are of fundamental interest to CEBAF and its possible future extension. The quark model assigns {phi} an s{bar s} structure, thus forbidding the radiative decay {phi}{yields}{pi}{sup 0}{gamma}. Experimentally it is also found to be suppressed, yielding a branching fraction of 1.3{times}10{sup {minus}3}. However, {phi}{yields}{rho}{pi} and {phi}{yields}{pi}{sup +}{pi}{sup {minus}}{pi}{sup 0} are not suppressed at all. Thus, it is possible to incorporate the widths of these decays into the framework of the chiral soliton model, by making use of a specific model for the compliance with OZI rule. Such a model is for example, the {omega}-{phi} mixing model. Consequence of this in the context of a chiral soliton model, which builds on the {pi}{rho}{omega}a{sub 1}(f{sub 1}) meson effective Lagrangian, is the context of this report.
The generalized hedgehog and the projected chiral soliton model
International Nuclear Information System (INIS)
Fiolhais, M.; Kernforschungsanlage Juelich G.m.b.H.; Goeke, K.; Bochum Univ.; Gruemmer, F.; Urbano, J.N.
1988-01-01
The linear chiral soliton model with quark fields and elementary pion and sigma fields is solved in order to describe static properties of the nucleon and the delta resonance. To this end a Fock state of the system is constructed which consists of three valence quarks in a 1s orbit with a generalized hedgehog spin-flavour configuration cosηvertical strokeu↓> - sin ηvertical stroked↑>. Coherent states are used to provide a quantum description for the mesonic parts of the total wave function. The corresponding classical pion field also exhibits a generalized hedgehog structure. Various nucleon properties are calculated. These include proton and neutron charge raii, and the mangnetic moment of the proton for which experiment is obtained. (orig./HSI)
Variational approach to chiral quark models
Energy Technology Data Exchange (ETDEWEB)
Futami, Yasuhiko; Odajima, Yasuhiko; Suzuki, Akira
1987-03-01
A variational approach is applied to a chiral quark model to test the validity of the perturbative treatment of the pion-quark interaction based on the chiral symmetry principle. It is indispensably related to the chiral symmetry breaking radius if the pion-quark interaction can be regarded as a perturbation.
A chiral quark model of the nucleon
International Nuclear Information System (INIS)
Wakamatsu, M.; Yoshiki, H.
1991-01-01
The baryon-number-one extended solution of a chiral quark lagrangian is obtained in the stationary-phase approximation with full inclusion of the sea-quark degrees of freedom. The collective quantization method is then applied to this static solution to obtain the nucleon (and Δ) state with the definite spin and isospin. A fundamental quantity appearing in this quantization procedure is the moment of inertia of the soliton system. We evaluate this quantity without recourse to the derivative expansion, by performing the necessary double sum over all the positive- and negative-energy quark orbitals in the mean field potential. Closed formulas are-derived for the nucleon (and Δ) matrix elements of arbitrary quark bilinear operators. These formulas are then used for calculating various nucleon observables in a nonperturbative manner with inclusion of the sea-quark effects. An especially interesting observable is the spin expectation value of the proton related to the recent EMC experiment. We derive the proton spin sum rule, and then explicitly evaluate the detailed contents of this sum rule. The proton spin analysis is shown to be particularly useful for clarifying the underlying dynamical content of the Skyrme model at quark level, thereby providing us with valuable information about its utility and limitation. (orig.)
Non-uniform chiral phase in effective chiral quark models
International Nuclear Information System (INIS)
Sadzikowski, M.; Broniowski, W.
2000-01-01
We analyze the phase diagram in effective chiral quark models (the Nambu-Jona-Lasinio model, the σ-model with quarks) and show that at the mean-field level a phase with a periodically-modulated chiral fields separates the usual phases with broken and restored chiral symmetry. A possible signal of such a phase is the production of multipion jets travelling in opposite directions, with individual pions having momenta of the order of several hundred MeV. This signal can be interpreted in terms of disoriented chiral condensates. (author)
The Goldberger-Treiman relation and the chiral soliton model
International Nuclear Information System (INIS)
Fiolhais, M.; Urbano, J.N.; Coimbra Univ.; Nippe, A.; Gruemmer, F.; Goeke, K.; Bonn Univ.
1987-01-01
The linear chiral soliton model with explicit quark fields and elementary pion- and sigma-fields is solved in order to describe nucleon and delta properties. Special emphasis is put on the axial vector coupling constant g A and on the Goldberger-Treiman relation. To this end baryon Fock states are constructed in a mean field approximation with hedgehog-like configurations from which the physical states are obtained by projection techniques. It is shown that the Goldberger-Treiman relation is only fulfilled if the quark- and pion-hedgehog is generalized and the variation is performed with projected states. Under this condition no parameter set is found which yields a proper g A and a proper pion-nucleon coupling constant g πNN , if the polarization of the Dirac sea is neglected. Other observables are reproduced within 20% limits or less. (orig.)
A variational approach to chiral quark models
International Nuclear Information System (INIS)
Futami, Yasuhiko; Odajima, Yasuhiko; Suzuki, Akira.
1987-01-01
A variational approach is applied to a chiral quark model to test the validity of the perturbative treatment of the pion-quark interaction based on the chiral symmetry principle. It is indispensably related to the chiral symmetry breaking radius if the pion-quark interaction can be regarded as a perturbation. (author)
Electroweak amplitudes in chiral quark models
International Nuclear Information System (INIS)
Fiolhais, Manuel
2004-01-01
After referring to some basic features of chiral models for baryons, with quarks and mesons, we describe how to construct model states representing physical baryons. We consider soliton models such as the Linear Sigma Model or the Chromodielectric Model, and bag models such as the Cloudy Bag Model. These models are solved approximately using variational approaches whose starting point is a mean-field description. We go beyond the mean-field description by introducing quantum fluctuations in the mesonic degrees of freedom. This is achieved, in a first step, by using a quantum state to represent meson clouds and, secondly, by performing an angular momentum and isospin projection from the mean-field state (actually a coherent state). Model states for baryons (nucleon, Delta, Roper) constructed in this way are used to determine several physical properties. I this seminar we paid a particular attention to the nucleon-delta electromagnetic and weak transition, presenting the model predictions for the electromagnetic and axial amplitudes
Composite mesons in self-confining chiral solitons
International Nuclear Information System (INIS)
Tandy, P.C.; Frank, M.R.
1991-01-01
Most quark-meson models for formation of a baryon as a bag or soliton solution begin with elementary local meson fields including a classical scalar configuration that provides repulsion of valence quarks from the vacuum. This presentation explores aspects of the very different formation mechanism that operates in a model where chiral effective meson fields are composite objects generated from bilocal qq-bar fluctuation fields and the dynamical quark mass can be self-confining. The focus is on the dynamical self-energy for quarks and the related distributed vertex for quark meson coupling. Initial numerical work to explore the practical consequences of these features is presented in the context of a static mean-field soliton. The particular method employed to identify the energy functional at the mean field or Hartree level is to obtain the standard effective action from the Legendre transformation with the help of a chemical potential constraint for the baryon number. The purpose of this approach is two-fold. First, a possible future consideration of radiative corrections might be undertaken by systematically continuing with the loop expansion beyond the lowest level. A second, more practical reason, is that in the presence of a general space-time dependent dynamical self-energy for quarks there are wavefunction renormalisation effects and energy self-consistencies to be defined and maintained for the valence quark states and eigenvalues. Speculations are made on whether this point of view can motivate meson-nucleon relativistic field models containing intrinsic cutoffs for use in nuclear physics. 29 refs., 5 figs
Quark matter in a chiral chromodielectric model
International Nuclear Information System (INIS)
Broniowski, W.; Kutschera, M.; Cibej, M.; Rosina, M.
1989-03-01
Zero and finite temperature quark matter is studied in a chiral chromodielectric model with quark, meson and chromodielectric degrees of freedom. Mean field approximation is used. Two cases are considered: two-flavor and three-flavor quark matter. It is found that at sufficiently low densities and temperatures the system is in a chirally broken phase, with quarks acquiring effective masses of the order of 100 MeV. At higher densities and temperatures a chiral phase transition occurs and the quarks become massless. A comparison to traditional nuclear physics suggests that the chirally broken phase with massive quark gas may be the ground state of matter at densities of the order of a few nuclear saturation densities. 24 refs., 5 figs. (author)
Quantum chromodynamics, chiral symmetry and bag models
International Nuclear Information System (INIS)
Soyeur, M.
1983-08-01
This course deals with the following subjects: quarks; quantum chromodynamics (the classical Lagrangian of QCD, quark masses, the classical equations of motion of QCD, general properties, lattices); chiral symmetry (massless free Dirac theory, realizations, the σ-model); the M.I.T. bag model (basic assumptions and equations of motion, spherical cavity approximation, properties of hadrons); the chiral bag models (basic assumptions, the cloudy bag model, the little bag model); non-topological soliton bag models
Chiral soliton models for baryons
International Nuclear Information System (INIS)
Weigel, H.
2008-01-01
This concise research monograph introduces and reviews the concept of chiral soliton models for baryons. In these models, baryons emerge as (topological) defects of the chiral field. The many applications shed light on a number of baryon properties, ranging from static properties via nucleon resonances and deep inelastic scattering to even heavy ion collisions. As far as possible, the theoretical investigations are confronted with experiment. Conceived to bridge the gap between advanced graduate textbooks and the research literature, this volume also features a number of appendices to help nonspecialist readers to follow in more detail some of the calculations in the main text. (orig.)
Chiral dynamics of baryons in the perturbative chiral quark model
Energy Technology Data Exchange (ETDEWEB)
Pumsa-ard, K.
2006-07-01
In this work we develop and apply variants of a perturbative chiral quark model (PCQM) to the study of baryonic properties dominantly in the low-energy region. In a first step we consider a noncovariant form of the PCQM, where confinement is modelled by a static, effective potential and chiral corrections are treated to second order, in line with similar chiral quark models. We apply the PCQM to the study of the electromagnetic form factors of the baryon octet. We focus in particular on the low-energy observables such as the magnetic moments, the charge and magnetic radii. In addition, the electromagnetic N-delta transition is also studied in the framework of the PCQM. In the chiral loop calculations we consider a quark propagator, which is restricted to the quark ground state, or in hadronic language to nucleon and delta intermediate states, for simplicity. We furthermore include the low-lying excited states to the quark propagator. In particular, the charge radius of the neutron and the transverse helicity amplitudes of the N-delta transition are considerably improved by this additional effect. In a next step we develop a manifestly Lorentz covariant version of the PCQM, where in addition higher order chiral corrections are included. The full chiral quark Lagrangian is motivated by and in analogy to the one of Chiral Perturbation Theory (ChPT). This Lagrangian contains a set of low energy constants (LECs), which are parameters encoding short distance effects and heavy degrees of freedom. We evaluate the chiral Lagrangian to order O(p{sup 4}) and to one loop to generate the dressing of the bare quark operators by pseudoscalar mesons. In addition we include the vector meson degrees of freedom in our study. Projection of the dressed quark operators on the baryonic level serves to calculate the relevant matrix elements. In a first application of this scheme, we resort to a parameterization of the valence quark form factors in the electromagnetic sector. Constraints
Quark fragmentation function and the nonlinear chiral quark model
International Nuclear Information System (INIS)
Zhu, Z.K.
1993-01-01
The scaling law of the fragmentation function has been proved in this paper. With that, we show that low-P T quark fragmentation function can be studied as a low energy physocs in the light-cone coordinate frame. We therefore use the nonlinear chiral quark model which is able to study the low energy physics under scale Λ CSB to study such a function. Meanwhile the formalism for studying the quark fragmentation function has been established. The nonlinear chiral quark model is quantized on the light-front. We then use old-fashioned perturbation theory to study the quark fragmentation function. Our first order result for such a function shows in agreement with the phenomenological model study of e + e - jet. The probability for u,d pair formation in the e + e - jet from our calculation is also in agreement with the phenomenological model results
Parity doublers in chiral potential quark models
International Nuclear Information System (INIS)
Kalashnikova, Yu. S.; Nefediev, A. V.; Ribeiro, J. E. F. T.
2007-01-01
The effect of spontaneous breaking of chiral symmetry over the spectrum of highly excited hadrons is addressed in the framework of a microscopic chiral potential quark model (Generalised Nambu-Jona-Lasinio model) with a vectorial instantaneous quark kernel of a generic form. A heavy-light quark-antiquark bound system is considered, as an example, and the Lorentz nature of the effective light-quark potential is identified to be a pure Lorentz-scalar, for low-lying states in the spectrum, and to become a pure spatial Lorentz vector, for highly excited states. Consequently, the splitting between the partners in chiral doublets is demonstrated to decrease fast in the upper part of the spectrum so that neighboring states of an opposite parity become almost degenerate. A detailed microscopic picture of such a 'chiral symmetry restoration' in the spectrum of highly excited hadrons is drawn and the corresponding scale of restoration is estimated
Lectures on the soliton theory of nucleons
International Nuclear Information System (INIS)
Ripka, G.
1984-04-01
In these lectures we describe models in which the pion field or, more precisely, the chiral fields, are responsible for the binding of quarks in the nucleon. Such bound states in which the quarks constitute a source for the chiral fields, which, in turn, bind the quarks to each other, are called solitons. The starting point for such theories or models are chiral invariant lagrangians. They are not derived from QCD. The Skyrme lagrangian is simpler in that it involves only chiral fields and no quarks. However it may be understood as an effective lagrangian from which the quark degrees of freedom have been integrated out. It is not yet clear to what extent various models are equivalent. The description of the nucleon in these lectures may be viewed as an extension of the T.D. Lee solitons so as to include the pionic degree of freedom
Quark matter inside neutron stars in an effective chiral model
International Nuclear Information System (INIS)
Kotlorz, A.; Kutschera, M.
1994-02-01
An effective chiral model which describes properties of a single baryon predicts that the quark matter relevant to neutron stars, close to the deconfinement density, is in a chirally broken phase. We find the SU(2) model that pion-condensed up and down quark matter is preferred energetically at neutron star densities. It exhibits spin ordering and can posses a permanent magnetization. The equation of state of quark matter with chiral condensate is very well approximated by bag model equation of the state with suitably chosen parameters. We study quark cores inside neutron stars in this model using realistic nucleon equations of state. The biggest quark core corresponds to the second order phase transition to quark matter. Magnetic moment of the pion-condensed quark core is calculated. (author). 19 refs, 10 refs, 1 tab
Quark solitons as constituents of hadrons
International Nuclear Information System (INIS)
Ellis, J.; Frishman, Y.; Hanany, A.; Karlinev, M.
1992-01-01
We exhibit static solutions of multi-flavour QCD in two dimensions that have the quantum numbers of baryons and mesons, constructed out of quark and anti-quark solitons. In isolation the latter solitons have infinite energy, corresponding to the presence of a string carrying the non-singlet colour flux off to spatial infinity. When N c solitons of this type are combined, a static, finite-energy, colour singlet solution is formed, corresponding to a baryon. Similarly, static meson solutions are formed out of a soliton and an anti-soliton of different flavours. The stability of the mesons against annihilation is ensured by flavour conservation. The static solutions exist only when the fundamental fields of the bosonized lagrangian belong to U(N c xN f ) rather than to SU(N c )xU(N f ). Discussion of flavour-symmetry breaking requires a careful treatment of the normal-ordering ambiguity. Our results can be viewed as a derivation of the constituent quark model in QCD 2 , allowing a detailed study of constituent mass generation and of the heavy-quark symmetry. (orig.)
The Baryon Number Two System in the Chiral Soliton Model
International Nuclear Information System (INIS)
Mantovani-Sarti, V.; Drago, A.; Vento, V.; Park, B.-Y.
2013-01-01
We study the interaction between two B = 1 states in a chiral soliton model where baryons are described as non-topological solitons. By using the hedgehog solution for the B = 1 states we construct three possible B = 2 configurations to analyze the role of the relative orientation of the hedgehog quills in the dynamics. The strong dependence of the inter soliton interaction on these relative orientations reveals that studies of dense hadronic matter using this model should take into account their implications. (author)
Pion polarizability in a chiral quark model
International Nuclear Information System (INIS)
Volkov, M.K.; Ebert, D.
1981-01-01
It is shown that the pion polarizability calculated in a chiral model with quark loops agrees exactly with the analogous quantity found in a chiral meson-baryon model. The results of a paper by Llanta and Tarrach are discussed critically
International Nuclear Information System (INIS)
Schleif, M.; Wuensch, R.
1996-04-01
We consider the mass of the one-loop hedgehog soliton of the bosonized SU(2) Nambu and Jona-Lasinio model embedded in hot nuclear matter minimiced by a gas of constituent quarks. We prove that the proper-time regularized and self-consistently determined soliton in a heat bath obeys Poincare's invariance up order V 2 . At finite temperature and chemical potential, we show that the inertial mass obtained in the perturbative pushing approach coincides with the total internal energy of the soliton. (orig.)
Pion polarizability in a chiral quark model
International Nuclear Information System (INIS)
Volkov, M.K.; Ehbert, D.
1980-01-01
The pion polarizability is calculated in a chiral meson-quark model at the one-loop level. The results are in complete agreement with earlier ones obtained within a chiral meson-baryon theory. A critical discussion of a recent paper by Lanta and Tarrach is given. The results of the paper give evidence to the nonlinear chiral Lagrangian favour
Lock-in of a Chiral Soliton Lattice by Itinerant Electrons
Okumura, Shun; Kato, Yasuyuki; Motome, Yukitoshi
2018-03-01
Chiral magnets often show intriguing magnetic and transport properties associated with their peculiar spin textures. A typical example is a chiral soliton lattice, which is found in monoaxial chiral magnets, such as CrNb3S6 and Yb(Ni1-xCux)3Al9 in an external magnetic field perpendicular to the chiral axis. Here, we theoretically investigate the electronic and magnetic properties in the chiral soliton lattice by a minimal itinerant electron model. Using variational calculations, we find that the period of the chiral soliton lattice can be locked at particular values dictated by the Fermi wave number, in stark contrast to spin-only models. We discuss this behavior caused by the spin-charge coupling as a possible mechanism for the lock-in discovered in Yb(Ni1-xCux)3Al9 [T. Matsumura et al., https://doi.org/10.7566/JPSJ.86.124702" xlink:type="simple">J. Phys. Soc. Jpn. 86, 124702 (2017)]. We also show that the same mechanism leads to the spontaneous formation of the chiral soliton lattice even in the absence of the magnetic field.
Pion polarizability in a chiral quark model
International Nuclear Information System (INIS)
Ebert, D.; Volkov, M.K.
1981-01-01
The pion polarizability is calculated in a chiral meson-quark model at the one-loop level. The results are in complete agreement with earlier ones obtained within a chiral meson-baryon theory. A critical discussion of a recent paper by Llanta and Tarrach is given. (orig.)
Pion polarizability in a chiral quark model
International Nuclear Information System (INIS)
Volkov, M.K.; Ehbert, D.
1981-01-01
The pion polarizability is calculated in a chiral meson- quark model at the one-loop level. The results are in complete agreement with earlier ones obtained within a chiral meson-baryon theory. A critical discussion of a recent paper by Llanta and Tarrach is given [ru
Structure functions from chiral soliton models
International Nuclear Information System (INIS)
Weigel, H.; Reinhardt, H.; Gamberg, L.
1997-01-01
We study nucleon structure functions within the bosonized Nambu-Jona-Lasinio (NJL) model where the nucleon emerges as a chiral soliton. We discuss the model predictions on the Gottfried sum rule for electron-nucleon scattering. A comparison with a low-scale parametrization shows that the model reproduces the gross features of the empirical structure functions. We also compute the leading twist contributions of the polarized structure functions g 1 and g 2 in this model. We compare the model predictions on these structure functions with data from the E143 experiment by GLAP evolving them from the scale characteristic for the NJL-model to the scale of the data
Modern status of quark bag model
International Nuclear Information System (INIS)
Bogolyubov, P.N.; Dorokhov, A.E.
1987-01-01
A review contains a modern status of the bag model - a composite quark model of hadrons. The idea of quasi-independent quarks moving in a finite closed region of space is a basic feature of the model. Dubna's formulation of the model and its different versions (MIT, chiral model and others) are given in detail. The role of symmetric and physical principles of the model is underlined, a critical review of mass formulas is given, the relation of the bag model and the soliton-like models (in particular with the Skyrme model) is considered
Color superconductivity from the chiral quark-meson model
Sedrakian, Armen; Tripolt, Ralf-Arno; Wambach, Jochen
2018-05-01
We study the two-flavor color superconductivity of low-temperature quark matter in the vicinity of chiral phase transition in the quark-meson model where the interactions between quarks are generated by pion and sigma exchanges. Starting from the Nambu-Gorkov propagator in real-time formulation we obtain finite temperature (real axis) Eliashberg-type equations for the quark self-energies (gap functions) in terms of the in-medium spectral function of mesons. Exact numerical solutions of the coupled nonlinear integral equations for the real and imaginary parts of the gap function are obtained in the zero temperature limit using a model input spectral function. We find that these components of the gap display a complicated structure with the real part being strongly suppressed above 2Δ0, where Δ0 is its on-shell value. We find Δ0 ≃ 40MeV close to the chiral phase transition.
Symmetry conservation in the linear chiral soliton model
International Nuclear Information System (INIS)
Goeke, K.
1988-01-01
The linear chiral soliton model with quark fields and elementary pion- and sigma-fields is solved in order to describe static properties of the nucleon and the delta resonance. To this end a Fock-state of the system is constructed consisting out of three valence quarks in a first orbit with a generalized hedgehog spin-flavour configuration. Coherent states are used to provide a quantum description for the mesonic parts of the total wave function. The corresponding classical pion field also exhibit a generalized hedgehog structure. In a pure mean field approximation the variation of the total energy results in the ordinary hedgehog form. In a quantized approach the generalized hedgehog-baryon is projected onto states with good spin and isospin and then noticeable deviations from the simple hedgehog form, if the relevant degrees of freedom of the wave function are varied after the projection. Various nucleon properties are calculated. These include proton and neutron charge radii, and the magnetic moment of the proton for which good agreement with experiment is obtained. The absolute value of the neutron magnetic moment comes out too large, similarly as the axial vector coupling constant and the pion-nucleon-nucleon coupling constant.To the generalization of the hedgehog the Goldberger-Treiman relation and a corresponding virial theorem are fulfilled. Variation of the quark-meson coupling parameter g and the sigma mass m σ shows that the g A is always at least 40 % too large compared to experiment. Hence it is concluded that either the inclusion of the polarization of the Dirac sea and/or further mesons with may be vector character or the consideration of intrinsic deformation is necessary. The concepts and results of the projections are compared with the semiclassical collective quantization method. 6 tabs., 14 figs., 43 refs
Roper resonances and generator coordinate method in the chiral-soliton model
International Nuclear Information System (INIS)
Meissner, T.; Gruemmer, F.; Goeke, K.; Harvey, M.
1989-01-01
The nucleon and Δ Roper resonances are described by means of the generator coordinate method in the framework of the nontopological chiral-soliton model. Solitons with various sizes are constructed with a constrained variational technique. The masses of all known Roper resonances come out to within 150 MeV of their experimental values. A nucleon compression modulus of about 4 GeV is extracted. The limits of the approach due to the polarization of the Dirac vacuum are displayed
Model for dynamical chiral symmetry breaking and quark condensate
International Nuclear Information System (INIS)
Nekrasov, M.L.; Rochev, V.E.
1986-01-01
In the framework of the model, proposed earlier to describe nonperturbative QCD, the singularity of the type 1/k 4 in the gluon propagator is shown to result in dynamical chiral symmetry breaking and appearance of quark condensate. The value, obtained for quark condensate, is close to the phenomenological one
The nucleon as a projected chiral soliton: vacuum and medium properties
International Nuclear Information System (INIS)
Fiolhais, M.; Alberto, P.; Ruiz Arriola, E.; Christov, C.V.; Bylgarska Akademiya na Naukite, Sofia
1990-01-01
Nucleon properties and nucleon form factors are computed within the framework of the projected linear chiral soliton model. To this end the Gell-Mann - Levy lagrangian is solved by means of variational methods which include angular momentum and isospin projection with trial quark-boson Fock states in generalized hedgehog configurations. The consistency of the treatment is checked by the fulfillment of virial theorems such as Goldberger-Treiman relation. In general the q 2 dependence of the nucleon form factors are well described although some of their values at zero momentum transfer come out too large, namely for the axial- and πN N- form factors. Electromagnetic form factors for the N - Δ transition are also calculated and compared with the available experimental data. Medium effects on the nucleon properties are investigated combining the projected chiral soliton model with the Nambu-Jona-Lasinio model. The latter is employed to compute the pion decay constant and the pion and sigma masses at finite medium density. These meson properties fix the parameters in the linear sigma model, which is then solved using the same variational methods as for the zero density. The nucleon mass shows a decrease of 17% and the proton radius an increase of 19% if the medium reaches nuclear matter density. The magnetic moments and g A are less affected by the medium. The nucleon electromagnetic form factors show remarkable changes at finite transfer numbers as well. (author)
Chiral quark model with relativistic kinematics
International Nuclear Information System (INIS)
Garcilazo, H.; Valcarce, A.
2003-01-01
The nonstrange baryon spectrum is studied within a three-body model that incorporates relativistic kinematics. We found that the combined effect of relativistic kinematics together with the pion exchange between quarks is able to reverse the order of the first positive- and negative-parity nucleon excited states as observed experimentally. Including the chiral partner of the pion (the σ meson) leads to an overall good description of the spectrum
Chiral quark model with relativistic kinematics
Garcilazo, H.; Valcarce, A.
2003-01-01
The non-strange baryon spectrum is studied within a three-body model that incorporates relativistic kinematics. We found that the combined effect of relativistic kinematics together with the pion exchange between quarks is able to reverse the order of the first positive- and negative-parity nucleon excited states as observed experimentally. Including the chiral partner of the pion (the $\\sigma$ meson) leads to an overall good description of the spectrum.
The penta-quark: a new kind of elementary particle?
International Nuclear Information System (INIS)
Goeke, K.; Praszatowicz, M.
2005-01-01
The discovery of the exotic Θ + with minimal quark structure uudds-bar may provide a sensation since, if confirmed, it is the first baryonic particle that cannot be composed of three quarks. The chiral quark soliton description of baryons has predicted the mass and an upper limit for the decay width of this particle prior to the experiments and in agreement with the present data. The model corresponds to a relativistic mean field description of the nucleon, where the quarks move in a self-consistent mean field of pionic and kaonic character. It uses an effective chiral Lagrangian based on spontaneously broken chiral symmetry of the QCD. In a natural way the chiral quark soliton model describes the well known lowest two multiplets (8, 1 + /2), (10, 3 + /2) and it predicts two more exotic particles being members of an anti-decuplet (10-bar, 1 + /2) consisting of penta-quarks. The very narrow width of the Θ + can be explained by the small overlap of the 5-quark light cone wave function of the Θ + with the small 5-quark light cone component of the wave function of the nucleon. If confirmed, Θ + will not only be a new kind of subatomic particle but will seriously influence our understanding of the structure of ordinary nucleons. (authors)
Kaon quark distribution functions in the chiral constituent quark model
Watanabe, Akira; Sawada, Takahiro; Kao, Chung Wen
2018-04-01
We investigate the valence u and s ¯ quark distribution functions of the K+ meson, vK (u )(x ,Q2) and vK (s ¯)(x ,Q2), in the framework of the chiral constituent quark model. We judiciously choose the bare distributions at the initial scale to generate the dressed distributions at the higher scale, considering the meson cloud effects and the QCD evolution, which agree with the phenomenologically satisfactory valence quark distribution of the pion and the experimental data of the ratio vK (u )(x ,Q2)/vπ (u )(x ,Q2) . We show how the meson cloud effects affect the bare distribution functions in detail. We find that a smaller S U (3 ) flavor symmetry breaking effect is observed, compared with results of the preceding studies based on other approaches.
Static and dynamical anomalies caused by chiral soliton lattice in molecular-based chiral magnets
International Nuclear Information System (INIS)
Kishine, Jun-ichiro; Inoue, Katsuya; Kikuchi, Koichi
2007-01-01
Interplay of crystallographic chirality and magnetic chirality has been of great interest in both chemist's and physicist's viewpoints. Crystals belonging to chiral space groups are eligible to stabilize macroscopic chiral magnetic order. This class of magnetic order is described by the chiral XY model, where the transverse magnetic field perpendicular to the chiral axis causes the chiral soliton lattice (CSL) formation. As a clear evidence of the chiral magnetic order, the temperature dependence of the transverse magnetization exhibits sharp cusp just below the mean field ferrimagnetic transition temperature, indicating the formation of the CSL. In addition to the static anomaly, we expect the CSL formation also causes dynamical anomalies such as induction of the spin supercurrent
Dual chiral density wave in quark matter
International Nuclear Information System (INIS)
Tatsumi, Toshitaka
2002-01-01
We prove that quark matter is unstable for forming a dual chiral density wave above a critical density, within the Nambu-Jona-Lasinio model. Presence of a dual chiral density wave leads to a uniform ferromagnetism in quark matter. A similarity with the spin density wave theory in electron gas and the pion condensation theory is also pointed out. (author)
QCD topological susceptibility from the nonlocal chiral quark model
Nam, Seung-Il; Kao, Chung-Wen
2017-06-01
We investigate the quantum chromodynamics (QCD) topological susceptibility χ by using the semi-bosonized nonlocal chiral-quark model (SB-NLχQM) for the leading large- N c contributions. This model is based on the liquid-instanton QCD-vacuum configuration, in which SU(3) flavor symmetry is explicitly broken by the finite current-quark mass ( m u,d, m s) ≈ (5, 135) MeV. To compute χ, we derive the local topological charge-density operator Q t( x) from the effective action of SB-NLχQM. We verify that the derived expression for χ in our model satisfies the Witten- Veneziano (WV) and the Leutwyler-Smilga (LS) formulae, and the Crewther theorem in the chiral limit by construction. Once the average instanton size and the inter-instanton distance are fixed with ρ¯ = 1/3 fm and R¯ = 1 fm, respectively, all the other parameters are determined self-consistently within the model. We obtain χ = (167.67MeV)4, which is comparable with the empirical value χ = (175±5MeV)4 whereas it turns out that χ QL = (194.30MeV)4 in the quenched limit. Thus, we conclude that the value of χ will be reduced around 10 20% by the dynamical-quark contribution.
Chiral model for nucleon and delta
International Nuclear Information System (INIS)
Birse, M.C.; Banerjee, M.K.
1985-01-01
We propose a model of the nucleon and delta based on the idea that strong QCD forces on length scales approx.0.2--1 fm result in hidden chiral SU(2) x SU(2) symmetry and that there is a separation of roles between these forces which are also responsible for binding quarks in hadrons and the forces which produce absolute confinement. This leads us to study a linear sigma model describing the interactions of quarks, sigma mesons, and pions. We have solved this model in the semiclassical (mean-field) approximation for the hedgehog baryon state. We refer to this solution as a chiral soliton. In the semiclassical approximation the hedgehog state is a linear combination of N and Δ. We project this state onto states of good spin and isospin to calculate matrix elements of various operators in these states. Our results are in reasonable agreement with the observed properties of the nucleon. The mesonic contributions to g/sub A/ and sigma(πN) are about two to three times too large, suggesting the need for quantum corrections
Chiral soliton lattice and charged pion condensation in strong magnetic fields
Energy Technology Data Exchange (ETDEWEB)
Brauner, Tomáš [Faculty of Science and Technology, University of Stavanger,N-4036 Stavanger (Norway); Yamamoto, Naoki [Department of Physics, Keio University,Yokohama 223-8522 (Japan)
2017-04-21
The Chiral Soliton Lattice (CSL) is a state with a periodic array of topological solitons that spontaneously breaks parity and translational symmetries. Such a state is known to appear in chiral magnets. We show that CSL also appears as a ground state of quantum chromodynamics at nonzero chemical potential in a magnetic field. By analyzing the fluctuations of the CSL, we furthermore demonstrate that in strong but achievable magnetic fields, charged pions undergo Bose-Einstein condensation. Our results, based on a systematic low-energy effective theory, are model-independent and fully analytic.
Chiral dynamics and heavy quark symmetry in a solvable toy field-theoretic model
International Nuclear Information System (INIS)
Bardeen, W.A.; Hill, C.T.
1994-01-01
We study a solvable QCD-like toy theory, a generalization of the Nambu--Jona-Lasinio model, which implements chiral symmetries of light quarks and heavy quark symmetry. The chiral symmetric and chiral broken phases can be dynamically tuned. This implies a parity-doubled heavy-light meson system, corresponding to a (0 - ,1 - ) multiplet and a (0 + ,1 + ) heavy spin multiplet. Consequently the mass difference of the two multiplets is given by a Goldberger-Treiman relation and g A is found to be small. The Isgur-Wise function ξ(w), the decay constant f B , and other observables are studied
Quark chiral condensate from the overlap quark propagator
Wang, Chao; Bi, Yujiang; Cai, Hao; Chen, Ying; Gong, Ming; Liu, Zhaofeng
2017-05-01
From the overlap lattice quark propagator calculated in the Landau gauge, we determine the quark chiral condensate by fitting operator product expansion formulas to the lattice data. The quark propagators are computed on domain wall fermion configurations generated by the RBC-UKQCD Collaborations with N f = 2+1 flavors. Three ensembles with different light sea quark masses are used at one lattice spacing 1/a = 1.75(4) GeV. We obtain in the SU(2) chiral limit. Supported by National Natural Science Foundation of China (11575197, 11575196, 11335001, 11405178), joint funds of NSFC (U1632104, U1232109), YC and ZL acknowledge the support of NSFC and DFG (CRC110)
Non-leptonic decays in an extended chiral quark model
Energy Technology Data Exchange (ETDEWEB)
Eeg, J. O. [Dept. of Physics, Univ. of Oslo, P.O. Box 1048 Blindern, N-0316 Oslo (Norway)
2012-10-23
We consider the color suppressed (nonfactorizable) amplitude for the decay mode B{sub d}{sup 0}{yields}{pi}{sup 0}{pi}{sup 0}. We treat the b-quark in the heavy quark limit and the energetic light (u,d,s) quarks within a variant of Large Energy Effective Theory combined with an extension of chiral quark models. Our calculated amplitude for B{sub d}{sup 0}{yields}{pi}{sup 0}{pi}{sup 0} is suppressed by a factor of order {Lambda}{sub QCD}/m{sub b} with respect to the factorized amplitude, as it should according to QCD-factorization. Further, for reasonable values of the (model dependent) gluon condensate and the constituent quark mass, the calculated nonfactorizable amplitude for B{sub d}{sup 0}{yields}{pi}{sup 0}{pi}{sup 0} can easily accomodate the experimental value. Unfortunately, the color suppressed amplitude is very sensitive to the values of these model dependent parameters. Therefore fine-tuning is necessary in order to obtain an amplitude compatible with the experimental result for B{sub d}{sup 0}{yields}{pi}{sup 0}{pi}{sup 0}.
Chiral Quark-Meson model of N and DELTA with vector mesons
International Nuclear Information System (INIS)
Broniowski, W.; Banerjee, M.K.
1985-10-01
Vector mesons rho, A 1 and ω are introduced in the Chiral Quark-Meson Theory (CQMT) of N and Δ. We propose a new viewpoint for developing CQMT from QCD at the mean-field level. The SU(2) x SU(2) chiral Lagrangian incorporates universal coupling. Accordingly, rho is coupled to the conserved isospin current, A to the partially conserved axial-vector current (PCAC), and ω to the conserved baryon current. As a result the only parameter of the model not directly related to experiment is the quark-pion coupling constant. A fully self-consistent mean-field solution to the model is found for fields in the hedgehog ansatz. The vector mesons play a very important role in the system. They contribute significantly to the values of observables and produce a high-quality fit to many data. The classical stability of the system with respect to hedgehog excitations is analyzed through the use of the Quark-Meson RPA equations (QMRPA)
Tetraquarks in a chiral constituent-quark model
International Nuclear Information System (INIS)
Vijande, J.; Fernandez, F.; Valcarce, A.; Silvestre-Brac, B.
2004-01-01
We analyze the possibility of heavy-light tetraquark bound states by means of a chiral constituent-quark model. The study is done in a variational approach. Special attention is paid to the contribution given by the different terms of the interacting potential and also to the role played by the different color channels. We find a stable state for both qq anti c anti c and qq anti b anti b configurations. Possible decay modes of these structures are analyzed. (orig.)
Tetraquarks in a chiral constituent-quark model
Energy Technology Data Exchange (ETDEWEB)
Vijande, J.; Fernandez, F.; Valcarce, A. [Grupo de Fisica Nuclear, Universidad de Salamanca, E-37008, Salamanca (Spain); Silvestre-Brac, B. [Institut des Sciences Nucleaires, 53 Avenue des Martyrs, F-38026, Grenoble Cedex (France)
2004-03-01
We analyze the possibility of heavy-light tetraquark bound states by means of a chiral constituent-quark model. The study is done in a variational approach. Special attention is paid to the contribution given by the different terms of the interacting potential and also to the role played by the different color channels. We find a stable state for both qq anti c anti c and qq anti b anti b configurations. Possible decay modes of these structures are analyzed. (orig.)
International Nuclear Information System (INIS)
Lyubovitskij, V.E.; Gutsche, Th.; Faessler, Amand; Mau, R. Vinh
2002-01-01
We apply the perturbative chiral quark model to the study of the low-energy πN interaction. Using an effective chiral Lagrangian we reproduce the Weinberg-Tomozawa result for the S-wave πN scattering lengths. After inclusion of the photon field we give predictions for the electromagnetic O(p 2 ) low-energy couplings of the chiral perturbation theory effective Lagrangian that define the electromagnetic mass shifts of nucleons and first-order (e 2 ) radiative corrections to the πN scattering amplitude. Finally, we estimate the leading isospin-breaking correction to the strong energy shift of the π - p atom in the 1s state, which is relevant for the experiment 'pionic hydrogen' at PSI
Soliton bag model of the nucleon and delta dressed by a quark-antiquark pion
International Nuclear Information System (INIS)
Dethier, J.L.L.
1985-01-01
The Friedberg-Lee soliton bag model is used to describe the nucleon, delta and pion. The author builds upon the mean-field solutions to the model taking into account the one-gluon-exchange interaction by the use of a free gluon propagator in the Coulomb gauge and allowing the nucleon or delta to consist of a bare three quark bag and a three quark bag dressed by one quark-antiquark pion. This way of treating the pion cloud differs from most other works on the subject by the fact that he takes the quark substructure of the pion into account. The generator coordinate method enables him to find an approximate solution to the ground state of the nucleon and the delta from which static physical properties can be calculated. The soliton field part of the ground state is treated in a coherent state approximation (similar to the mean-field approximation, but remaining a true quantum state). The generator coordinate or Hill-Wheeler integral equations are solved numerically with the help of the Tikhonov regularization. Detailed numerical results are given for different sets of parameters. The agreement with experiment is as good as in the mean-field approximation but new quantities are now accessible to computation (e.g., the neutron charge radius and the NN[ and NΔπ coupling constants
Quark spin-flavor layered structure with condensed π/sup 0/ field in Chiral bag model
International Nuclear Information System (INIS)
Tamagaki, R.; Tatsumi, T.
1984-01-01
In order to understand predispositions of high density matter, a new phase possibly arising from the neutron matter under π/sup 0/ condensation is studied in chiral bag model, as a facet in which both quark and pion degrees of freedom are incorporated in a well-developed situation of π/sup 0/ condensation. The aspects of this phase are characterized by the periodic layered structure of the two-dimensional quark matter with a specific spin-flavor order the π/sup 0/ field existent as the Nambu-Goldstone mode between the adjacent layers. Such quark configuration is caused due to the pion-quark coupling at the layer (bag) surface which drastically lowers quark energy. Energy properties of the system are examined, and it is shown that the one-gluon-exchange contribution provides the repulsive effect to prevent the layered structure from collapsing. This model provides an example which can be solved nonperturbatively in the chiral bag model and suggests the possibility of an intermediate stage which may appear prior to the phase transition to uniform quark matter
Nucleon spin-flavor structure in the SU(3)-breaking chiral quark model
International Nuclear Information System (INIS)
Song, X.; McCarthy, J.S.; Weber, H.J.
1997-01-01
The SU(3) symmetric chiral quark model, which describes interactions between quarks, gluons, and the Goldstone bosons, explains reasonably well many aspects of the flavor and spin structure of the proton, except for the values of f 3 /f 8 and Δ 3 /Δ 8 . Introducing the SU(3)-breaking effect suggested by the mass difference between the strange and nonstrange quarks, we find that this discrepancy can be removed and better overall agreement obtained. copyright 1997 The American Physical Society
Effects of renormalizing the chiral SU(2) quark-meson model
Zacchi, Andreas; Schaffner-Bielich, Jürgen
2018-04-01
We investigate the restoration of chiral symmetry at finite temperature in the SU(2) quark-meson model, where the mean field approximation is compared to the renormalized version for quarks and mesons. In a combined approach at finite temperature, all the renormalized versions show a crossover transition. The inclusion of different renormalization scales leave the order parameter and the mass spectra nearly untouched but strongly influence the thermodynamics at low temperatures and around the phase transition. We find unphysical results for the renormalized version of mesons and the combined one.
Chiral Lagrangians and quark condensate in nuclei
International Nuclear Information System (INIS)
Delorme, J.; Chanfray, G.; Ericson, M.
1996-03-01
The evolution of density of quark condensate in nuclear medium with interacting nucleons, including the short range correlations is examined. Two chiral models are used, the linear sigma model and the non-linear one. It is shown that the quark condensate, as other observables, is independent on the variant selected. The application to physical pions excludes the linear sigma model as a credible one. The non-linear models restricted to pure s-wave pion-nucleon scattering are examined. (author)
Quark mass correction to chiral separation effect and pseudoscalar condensate
Energy Technology Data Exchange (ETDEWEB)
Guo, Er-dong [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,Chinese Academy of Sciences,Beijing 100190 (China); Kavli Institute of Theoretical Physics China, Chinese Academy of Sciences,Beijing 100190 (China); Lin, Shu [School of Physics and Astronomy, Sun Yat-Sen University,No 2 University Road, Zhuhai 519082 (China)
2017-01-25
We derived an analytic structure of the quark mass correction to chiral separation effect (CSE) in small mass regime. We confirmed this structure by a D3/D7 holographic model study in a finite density, finite magnetic field background. The quark mass correction to CSE can be related to correlators of pseudo-scalar condensate, quark number density and quark condensate in static limit. We found scaling relations of these correlators with spatial momentum in the small momentum regime. They characterize medium responses to electric field, inhomogeneous quark mass and chiral shift. Beyond the small momentum regime, we found existence of normalizable mode, which possibly leads to formation of spiral phase. The normalizable mode exists beyond a critical magnetic field, whose magnitude decreases with quark chemical potential.
Strange star candidates revised within a quark model with chiral mass scaling
Institute of Scientific and Technical Information of China (English)
Ang Li; Guang-Xiong Peng; Ju-Fu Lu
2011-01-01
We calculate the properties of static strange stars using a quark model with chiral mass scaling. The results are characterized by a large maximum mass (～ 1.6 M⊙) and radius (～ 10 km). Together with a broad collection of modern neutron star models, we discuss some recent astrophysical observational data that could shed new light on the possible presence of strange quark matter in compact stars. We conclude that none of the present astrophysical observations can prove or confute the existence of strange stars.
Divergence of the quark self-energy in the second quantized chiral bag model
International Nuclear Information System (INIS)
Oset, E.
1983-01-01
When summing over the intermediate quark states of a spherical cavity, the quark self-energy of the chiral bag model, in lowest order of the pion coupling, is shown to generate a series of terms, each one growing linearly with the angular variable kappa. However, there is a cancellation between terms for different kappa, which finally leads to an overall linearly divergent series. (orig.)
Qq(Q-bar)(q-bar)' states in chiral SU(3) quark model
International Nuclear Information System (INIS)
Zhang Haixia; Zhang Min; Zhang Zongye
2007-01-01
We study the masses of Qq(Q-bar)(q-bar)' states with J PC =0 ++ , 1 ++ , 1 +- and 2 ++ in the chiral SU(3) quark model, where Q is the heavy quark (c or b) and q(q') is the light quark (u,d or s). According to our numerical results, it is improbable to make the interpretation of [cn(c-bar)(n-bar)] 1 ++ and [cn(c-bar)(n-bar)] 2 ++ (n=u,d) states as X(3872) and Y(3940), respectively. However, it is interesting to find the tetraquarks in the bq(b-bar)(q-bar)' system. (authors)
Soliton matter as a model of dense nuclear matter
International Nuclear Information System (INIS)
Glendenning, N.K.
1985-01-01
We employ the hybrid soliton model of the nucleon consisting of a topological meson field and deeply bound quarks to investigate the behavior of the quarks in soliton matter as a function of density. To organize the calculation, we place the solitons on a spatial lattice. The model suggests the transition of matter from a color insulator to a color conductor above a critical density of a few times normal nuclear density. 9 references, 5 figures
Chiral solitons in spinor polariton rings
Zezyulin, D. A.; Gulevich, D. R.; Skryabin, D. V.; Shelykh, I. A.
2018-04-01
We consider theoretically one-dimensional polariton ring accounting for both longitudinal-transverse (TE-TM) and Zeeman splittings of spinor polariton states and spin-dependent polariton-polariton interactions. We present a class of solutions in the form of the localized defects rotating with constant angular velocity and analyze their properties for realistic values of the parameters of the system. We show that the effects of the geometric phase arising from the interplay between the external magnetic field and the TE-TM splitting introduce chirality in the system and make solitons propagating in clockwise and anticlockwise directions nonequivalent. This can be interpreted as a solitonic analog of the Aharonov-Bohm effect.
Baryon axial-vector couplings and SU(3)-symmetry breaking in chiral quark models
International Nuclear Information System (INIS)
Horvat, D.; Ilakovac, A.; Tadic, D.
1986-01-01
SU(3)-symmetry breaking is studied in the framework of the chiral bag models. Comparisons are also made with the MIT bag model and the harmonic-oscillator quark model. An important clue for the nature of the symmetry breaking comes from the isoscalar axial-vector coupling constant g/sub A//sup S/ which can be indirectly estimated from the Bjorken sum rules for deep-inelastic scattering. The chiral bag model with two radii reasonably well accounts for the empirical values of g/sub A//sup S/ and of the axial-vector coupling constants measured in hyperon semileptonic decays
Thermal evolution of massive strange compact objects in a SU(3) chiral Quark Meson model
Energy Technology Data Exchange (ETDEWEB)
Zacchi, Andreas
2017-07-04
In this work, thermodynamical properties of strongly interacting matter within a chiral SU(2)- and SU(3) chiral Quark Meson model have been analysed. Both effective models describe the development of the quark masses in media via the corresponding fields through chiral symmetry, which is expected to be restored at high temperatures and/or high densities, and spontaneously broken at low temperatures and/or densities. Spontaneous and explicit chiral symmetry breaking patterns give rise to massive Goldstone bosons, which are associated with the pions. Their chiral partners, the sigma mesons, are expected to be degenerate in mass, which was what we studied and observed at large temperatures/densities. The derivation and computation of thermodynamical quantities and properties in both cases can for instance be used to study relativistic and hydrodynamic Heavy Ion Collisions and the early universe for vanishing baryon number (SU(2)-case). They are also interesting for extreme astrophysical scenarios, such as Supernova explosions and the thermal evolution of their remnants, which has been among the topics of this thesis (SU(3)-case). Inclusion of the zero point energy in the SU(2) model has been carried out separately for the meson sector and for the quark sector as well as in a combined approach, where we learned, that the quark sector is quite dominant and that the vacuum fluctuations of the meson fields have little influence on the order parameter, but affect the relativistic degrees of freedom. In the SU(3) case, the inclusion of the zero point energy in the quark sector is much more computationally complex, but, as in the SU(2) case, is also not negliable, as its influence also changes the thermodynamical quantities at finite temperatures in a nontrivial manner. Here some features of the Supernova equation of state have been studied, which look promising for further investigations for Supernovae (proto neutron stars) and also for compact star mergers. The final
Axial charges of octet and decuplet baryons in a perturbative chiral quark model
Liu, X. Y.; Samart, D.; Khosonthongkee, K.; Limphirat, A.; Xu, K.; Yan, Y.
2018-05-01
Using the perturbative chiral quark model (PCQM), we investigate and predict in this work axial charges gAB of octet and decuplet N , Σ , Ξ , Δ , Σ*, and Ξ* baryons, considering both the ground and excited states in the quark propagator. The PCQM predictions are in good agreement with the experimental data, lattice-QCD values, and other approaches. In addition, the study reveals that the meson cloud is influential in the PCQM, contributing around 30% to the total values of gAB, and the meson cloud contribution to gAB stems mainly from the diagrams with the ground-state quark propagator while the excited intermediate quark states reduce gAB by 10-20%.
Chiral symmetry-breaking and the quark mass
International Nuclear Information System (INIS)
Gautam, V.P.; Kar, S.C.
1988-01-01
The generation of mass for light and heavy-quark sectors in the case of chiral symmetry-breaking is studied and an attempt is made to find the origin of quark mass and renormalization point corresponding to current-quark mass. (M.G.B.). 12 refs
Chiral bags, skyrmions and quarks in nuclei
International Nuclear Information System (INIS)
Rho, M.
1984-09-01
Recent developments on an intriguing connection between the quark-bag description of the baryons (nucleons in particular) and the Skyrmion model are discussed in terms of the constraints coming from chiral anomalies. Topics treated are the leaking baryon charge, axial charge and energy density; the role of chiral anomalies; the role of Skyrme's quartic term and the connection to the meson degrees of freedom; and finally some qualitative implications in nuclei. The presentation is purposely descriptive and intuitive instead of mathematically precise
Strange mesonic transition form factor in the chiral constituent quark model
International Nuclear Information System (INIS)
Ito, H.; Ramsey-Musolf, M.J.
1998-01-01
The form factor g ρπ (S) (Q 2 ) of the strange vector current transition matrix element left-angle ρ|bar sγ μ s|π right-angle is calculated within the chiral quark model. A strange vector current of the constituent U and D quarks is induced by kaon radiative corrections and this mechanism yields the nonvanishing values of g ρπ (S) (0). The numerical result at the photon point is consistent with the one given by the φ-meson dominance model, but the falloff in the Q 2 dependence is faster than the monopole form factor. Mesonic radiative corrections are also examined for the electromagnetic ρ-to-π and K * -to-K transition amplitudes. copyright 1998 The American Physical Society
Adler function and hadronic contribution to the muon g-2 in a nonlocal chiral quark model
International Nuclear Information System (INIS)
Dorokhov, Alexander E.
2004-01-01
The behavior of the vector Adler function at spacelike momenta is studied in the framework of a covariant chiral quark model with instantonlike quark-quark interaction. This function describes the transition between the high-energy asymptotically free region of almost massless current quarks to the low-energy hadronized regime with massive constituent quarks. The model reproduces the Adler function and V-A correlator extracted from the ALEPH and OPAL data on hadronic τ lepton decays, transformed into the Euclidean domain via dispersion relations. The leading order contribution from the hadronic part of the photon vacuum polarization to the anomalous magnetic moment of the muon, a μ hvp(1) , is estimated
Chiral symmetry and quark-antiquark pair creation in a strong color-electromagnetic field
International Nuclear Information System (INIS)
Suganuma, Hideo; Tatsumi, Toshitaka.
1993-01-01
We study the manifestation of chiral symmetry and q-q-bar pair creation in the presence of the external color-electromagnetic field, using the Nambu-Jona-Lasinio model. We derive the compact formulae of the effective potential, the Dyson equation for the dynamical quark mass and the q-q-bar pair creation rate in the covariantly constant color-electromagnetic field. Our results are compared with those in other approaches. The chiral-symmetry restoration takes place by a strong color-electric field, and the rapid reduction of the dynamical quark mass is found around the critical field strength, ε cr ≅4GeV/fm. Natural extension to the three-flavor case including s-quarks is also done. Around quarks or antiquarks, chiral symmetry would be restored by the sufficiently strong color-electric field, which may lead to the chiral bag picture of hadrons. For the early stage for ultrarelativistic heavy-ion collisions, the possibility of the chiral-symmetry restoration is indicated in the central region just after the collisions. (author)
Geometrical protection of topological magnetic solitons in microprocessed chiral magnets
Mito, Masaki; Ohsumi, Hiroyuki; Tsuruta, Kazuki; Kotani, Yoshinori; Nakamura, Tetsuya; Togawa, Yoshihiko; Shinozaki, Misako; Kato, Yusuke; Kishine, Jun-ichiro; Ohe, Jun-ichiro; Kousaka, Yusuke; Akimitsu, Jun; Inoue, Katsuya
2018-01-01
A chiral soliton lattice stabilized in a monoaxial chiral magnet CrNb3S6 is a magnetic superlattice consisting of magnetic kinks with a ferromagnetic background. The magnetic kinks are considered to be topological magnetic solitons (TMSs). Changes in the TMS number yield discretized responses in magnetization and electrical conductivity, and this effect is more prominent in smaller crystals. We demonstrate that, in microprocessed CrNb3S6 crystals, TMSs are geometrically protected through element-selected micromagnetometry using soft x-ray magnetic circular dichroism (MCD). A series of x-ray MCD data is supported by mean-field and micromagnetic analyses. By designing the microcrystal geometry, TMS numbers can be successfully changed and fixed over a wide range of magnetic fields.
Quark model with chiral-symmetry breaking and confinement in the Covariant Spectator Theory
Energy Technology Data Exchange (ETDEWEB)
Biernat, Elmer P. [CFTP, Instituto Superior TÃ©cnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Pena, Maria Teresa [CFTP, Instituto Superior TÃ©cnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Departamento de FÃsica, Instituto Superior TÃ©cnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Ribiero, Jose' Emilio F. [CeFEMA, Instituto Superior TÃ©cnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Stadler, Alfred [Departamento de FÃsica, Universidade de Ãvora, 7000-671 Ãvora, Portugal; Gross, Franz L. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-03-01
We propose a model for the quark-antiquark interaction in Minkowski space using the Covariant Spectator Theory. We show that with an equal-weighted scalar-pseudoscalar structure for the confining part of our interaction kernel the axial-vector Ward-Takahashi identity is preserved and our model complies with the Adler-zero constraint for pi-pi-scattering imposed by chiral symmetry.
Chiral quarks and proton decay
International Nuclear Information System (INIS)
Chadha, S.; Daniel, M.; Gounaris, G.J.; Murphy, A.J.
1984-04-01
The authors calculate the hadronic matrix elements of baryon decay operators using a chiral effective Lagrangian with quarks, gluons and Goldstone boson fields. The cases where the ΔB=1 operators arise from supersymmetric SU(5) GUT as well as the minimal SU(5) GUT model are studied. In each model the results depend on two parameters. In particular there is a range of values for the two parameters, where the dominant decay modes in the minimal SU(5) GUT are: p→etae + and n→π - e + . (author)
The nontopological soliton model
International Nuclear Information System (INIS)
Wilets, L.
1988-01-01
The nontopological soliton model introduced by Friedberg and Lee, and variations of it, provide a method for modeling QCD which can effectively include the dynamics of hadronic collisions as well as spectra. Absolute color confinement is effected by the assumed dielectric properties of the medium. A recently proposed version of the model is chirally invariant. 32 refs., 5 figs., 1 tab
Strange baryons in a chiral quark-meson model. Pt. 2
International Nuclear Information System (INIS)
McGovern, J.A.; Birse, M.C.
1990-01-01
The chrial-quark meson model is used to study baryon properties with realistic breaking of SU(3). The symmetry breaking is assumed to be strong, so that a random phase approximation (RPA) can be used. In this the strange baryons are described as excitations built on the hedgehog soliton and have an excitation energy of 315 MeV. Other properties of strange baryons are obtained by an approximate spin-isospin projection from the RPA wave function. The magnetic moments agree reasonably well with experiment, but the deviations from the experimental values suggest that the method is valid for the case of rather stronger symmetry breaking than is realistic. The dependence of the RPA energy on the magnitude of the symmetry breaking is examined, and found to be strongly nonlinear for realistic values. This supports the idea that a large πN sigma commutator need not imply a large strange-quark content in the proton. For reasonable values of the scalar meson masses the strange-quark condensate is found to be less than 5% of the total, at the mean-field level. We also estimate the contribution to the condensate from RPA correlations. Within a one-mode approximation we find these to be very small, ≅ 2%. (orig.)
QCD phase transition with chiral quarks and physical quark masses.
Bhattacharya, Tanmoy; Buchoff, Michael I; Christ, Norman H; Ding, H-T; Gupta, Rajan; Jung, Chulwoo; Karsch, F; Lin, Zhongjie; Mawhinney, R D; McGlynn, Greg; Mukherjee, Swagato; Murphy, David; Petreczky, P; Renfrew, Dwight; Schroeder, Chris; Soltz, R A; Vranas, P M; Yin, Hantao
2014-08-22
We report on the first lattice calculation of the QCD phase transition using chiral fermions with physical quark masses. This calculation uses 2+1 quark flavors, spatial volumes between (4 fm)(3) and (11 fm)(3) and temperatures between 139 and 196 MeV. Each temperature is calculated at a single lattice spacing corresponding to a temporal Euclidean extent of N(t) = 8. The disconnected chiral susceptibility, χ(disc) shows a pronounced peak whose position and height depend sensitively on the quark mass. We find no metastability near the peak and a peak height which does not change when a 5 fm spatial extent is increased to 10 fm. Each result is strong evidence that the QCD "phase transition" is not first order but a continuous crossover for m(π) = 135 MeV. The peak location determines a pseudocritical temperature T(c) = 155(1)(8) MeV, in agreement with earlier staggered fermion results. However, the peak height is 50% greater than that suggested by previous staggered results. Chiral SU(2)(L) × SU(2)(R) symmetry is fully restored above 164 MeV, but anomalous U(1)(A) symmetry breaking is nonzero above T(c) and vanishes as T is increased to 196 MeV.
Nucleon-nucleon interaction in the soliton bag model
International Nuclear Information System (INIS)
Schuh, A.
1985-01-01
In the framework of the Soliton Bag Model introduced by Friedberg and Lee we treat S-wave nucleon-nucleon scattering. Our system consists of six quarks and the nontopological soliton field which represents an average colorfree interaction between the quarks and yields their (relative) confinement. The dynamical problem is treated by means of the Generator coordinate Method (GCM) where the total wave function is the weighted sum over static configurations of prescribed bag deformation. The static configurations needed for the GCM ansatz are generated starting from a potential well of prescribed deformation wherein we solve the Dirac equation for the quarks. The single particle quark orbitals are properly coupled with respect to orbital, color, spin, and isospin quantum numbers to form a totally antisymmetric 6-quark state. A mean field solution for the soliton field is then calculated and turned into a quantum mechanical state by a coherent state approximation. Since these static configurations are only to be seen as wave function generators for the GCM no selfconsistency between quark and soliton solution is enforced. With these configurations we then evaluate the norm and Hamiltonian kernels appearing in the GCM treatment. The Hill-Wheeler integral equation for the weight functions is transformed into a Schroedinger-type differential equation by an expansion into symmetric moments of up to second order. This equation is brought into a form where we can identify the interaction potential unambiguously. We find an intermediate range attraction of about 120 MeV and no attraction in the vicinity of the spherically symmetric shape of the system, in contradiction to the naive adiabatic potentials widely used in quark models for the nucleon-nucleon interaction up to now. (orig./HSI) [de
Hadronic interactions from effective chiral Lagrangians of quarks and gluons
International Nuclear Information System (INIS)
Krein, G.
1996-06-01
We discuss the combined used of the techniques of effective chiral field theory and the field theoretic method known as Fock-Tani representation to derive effective hadron interactions. The Fock-Tani method is based on a change of representation by means of a unitary transformation such that the composite hadrons are redescribed by elementary-particle field operators. Application of the unitary transformation on the microscopic quark-quark interaction derived from a chiral effective Lagrangian leads to chiral effective interactions describing all possible processes involving hadrons and their constituents. The formalism is illustrated by deriving the one-pion-exchange potential between the nucleons using the quark-gluon effective chiral Lagrangian of Manohar and Georgi. We also present the results of a study of the saturation properties of the nuclear matter using this formalism. (author). 9 refs., 2 figs
Born term for high-energy meson-hadron collisions from QCD and chiral quark model
International Nuclear Information System (INIS)
Ochs, W.; Shimada, T.
1988-01-01
Various experimental observations reveal a sizeable hard component in the high-energy 'soft' hadronic collisions. For primary meson beams we propose a QCD Born term which describes the dissociation of the primary meson into a quark-antiquark pair in the gluon field of the target. A pointlike effective pion-quark coupling is assumed as in the chiral quark model by Manohar and Georgi. We derive the total cross sections which for pion beams, for example, are given in terms of f π -2 and some properties of the hadronic final states. In particular, we stress the importance of studying three-jet events in meson-nucleon scattering and discuss the seagull effect. (orig.)
Chiral superfluidity of the quark-gluon plasma
International Nuclear Information System (INIS)
Kalaydzhyan, Tigran
2012-08-01
In this paper we argue that the strongly coupled quark-gluon plasma can be considered as a chiral superfluid. The ''normal'' component of the fluid is the thermalized matter in common sense, while the ''superfluid'' part consists of long wavelength (chiral) fermionic states moving independently. We use several nonperturbative techniques to demonstrate that. First, we analyze the fermionic spectrum in the deconfinement phase (T c c ) using lattice (overlap) fermions and observe a gap between near-zero modes and the bulk of the spectrum. Second, we use the bosonization procedure with a finite cut-off and obtain a dynamical axion-like field out of the chiral fermionic modes. Third, we use relativistic hydrodynamics for macroscopic description of the effective theory obtained after the bosonization. Finally, solving the hydrodynamic equations in gradient expansion, we find that in the presence of external electromagnetic fields the motion of the ''superfluid'' component gives rise to the chiral magnetic, chiral electric and dipole wave effects. Latter two effects are specific for a two-component fluid, which provides us with crucial experimental tests of the model.
A nonlocal model of chiral dynamics
International Nuclear Information System (INIS)
Holdom, B.; Terning, J.; Verbeek, K.
1989-01-01
We consider a nonlocal generalization of the nonlinear σ model. Our chirally symmetric model couples quarks with self-energy Σ(p) to Goldstone bosons (GBs). By integrating out the quarks we obtain a chiral lagrangian, the parameters of which are finite integrals of Σ(p). We find that chiral symmetry is not sufficient to derive the well-known Pagels-Stokar formula for the GB decay constant. We reproduce the Wess-Zumino term and we illustrate the dependence of other four derivative coefficients on Σ(p). (orig.)
Effective meson lagrangian with chiral and heavy quark symmetries from quark flavor dynamics
International Nuclear Information System (INIS)
Ebert, D.; Feldmann, T.; Friedrich, R.; Reinhardt, H.
1994-06-01
By bosonization of an extended NJL model we derive an effective meson theory which describes the interplay between chiral symmetry and heavy quark dynamics. This effective theory is worked out in the low-energy regime using the gradient expansion. The resulting effective lagrangian describes strong and weak interactions of heavy B and D mesons with pseudoscalar Goldstone bosons and light vector and axial-vector mesons. Heavy meson weak decay constants, coupling constants and the Isgur-Wise function are predicted in terms of the model parameters partially fixed from the light quark sector. Explicit SU(3) F symmetry breaking effects are estimated and, if possible, confronted with experiment. (orig.)
Chiral symmetry breaking and the pion quark structure
International Nuclear Information System (INIS)
Bernard, V.
1986-01-01
The mechanism of dynamical breaking of chiral symmetry in hadronic matter is first studied in the framework of the Nambu and Jona-Lasinio model on one hand and its generalisation to finite hadron size on the other hand. The analysis uses a variational procedure modelled after the BCS superconductor. Our study indicates for example, a great sensitivity of various quantities characterizing the breaking of symmetry to the shape of the interaction. Also the mechanism of breaking of chiral symmetry is essentially related to the mechanism of confinement. When a symmetry is spontaneously broken, there exists a Goldstone particle of zero mass. This is true in our model. This particle, the pion, is obtained as solution of a Bethe Salpeter equation for a qantiq bound state. This enables us to establish a connection between the pion as a Goldstone boson related to spontaneous symmetry breaking and the quark-antiquark structure of the pion. The finite mass of the physical pion is obtained with non zero current quark mass. Various properties of this particle are then studied in the RPA formalism. One important point of our model is the highly collective character of the pion. 85 refs [fr
The SU(3)-Nambu-Jona-Lasinio soliton in the collective quantization formulation
International Nuclear Information System (INIS)
Blotz, A.; Goeke, K.; Diakonov, D.; Petrov, V.; Pobylitsa, P.V.; Park, N.W.
1992-01-01
On grounds of a semibosonized Nambu-Jona-Lasinio model, which has SU(3) R circle-times SU(3) L -symmetry in the chiral limit, mass splittings for spin 1/2 and spin 3/2 baryons are studied in the presence of an explicit chiral symmetry breaking strange quark mass. To this aim these strangeness carrying baryons are understood as SU(3)-rotational excitations of an SU(2)-embedded soliton solution. Therefore, within the framework of collective quantization, the fermion determinant with the strange quark mass is expanded up to the second order in the flavor rotation velocity and up to the first order in this quark mass. Besides the strange and non-strange moments of inertia, which have some counterparts within the Skyrme model, some so-called anomalous moments of inertia are obtained. These call be related to the imaginary part of the effective Euclidian action and contain among others the anomalous baryon current. This is shown in a gradient expansion up to the first non-vanishing order. Together with the Σ-commutator these are the solitonic ingredients of the collective hamiltonian, which is then diagonalized by means of strict perturbation theory in the strange quark mass and by the Yabu-Audo method. Both methods yield very good results for the masses of the spin 1/2 and 3/2 baryons. The former one reproduces some interesting mass formulas of Gell-Mann Okubo and Guadagnini and the latter one is able to describe the mass splittings up to a few MeV
Quark propagator and chiral condensate in an instanton vacuum
International Nuclear Information System (INIS)
D'yakonov, D.I.; Petrov, V.Y.
1985-01-01
A new mechanism is proposed for the spontaneous breaking of chiral symmetry of strong interactions in the instanton vacuum of quantum chromodynamics. The mechanism is based on the collectivization of zero-fermion modes of individual instantons in a pseudoparticle medium. The quark propagator in an instanton medium is found, and it is shown that the massless pole of the free propagator cancels out, with the quark assuming a momentum-dependent effective mass. The parameters of the instanton medium found previously are used to obtain the value of the chiral condensate and the effective mass of the quark, which are in good agreement with phenomenology
International Nuclear Information System (INIS)
Musakhanov, M.M.
1980-01-01
The chiral bag model is considered. It is suggested that pions interact only with the surface of a quark ''bag'' and do not penetrate inside. In the case of a large bag the pion field is rather weak and goes to the linearized chiral bag model. Within that model the baryon mass spectrum, β decay axial constant, magnetic moments of baryons, pion-baryon coupling constants and their form factors are calculated. It is shown that pion corrections to the calculations according to the chiral bag model is essential. The obtained results are found to be in a reasonable agreement with the experimental data
Chiral superfluidity of the quark-gluon plasma
Energy Technology Data Exchange (ETDEWEB)
Kalaydzhyan, Tigran [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Institute for Theoretical and Experimental Physics ITEP, Moscow (Russian Federation)
2012-08-15
In this paper we argue that the strongly coupled quark-gluon plasma can be considered as a chiral superfluid. The ''normal'' component of the fluid is the thermalized matter in common sense, while the ''superfluid'' part consists of long wavelength (chiral) fermionic states moving independently. We use several nonperturbative techniques to demonstrate that. First, we analyze the fermionic spectrum in the deconfinement phase (T{sub c}
Light pseudoscalar mesons in a nonlocal SU(3) chiral quark model
International Nuclear Information System (INIS)
Scarpettini, A.; Gomez Dumm, D.; Scoccola, Norberto N.
2004-01-01
We study the properties of the light pseudoscalar mesons in a three-flavor chiral quark model with nonlocal separable interactions. We concentrate on the evaluation of meson masses and decay constants, considering both the cases of Gaussian and Lorentzian nonlocal regulators. The results are found to be in quite good agreement with the empirical values, in particular in the case of the ratio f K /f π and the anomalous decay π 0 →γγ. In addition, the model leads to a reasonable description of the observed phenomenology in the η-η ' sector, even though it implies the existence of two significantly different state mixing angles
Light pseudoscalar mesons in a nonlocal three flavor chiral quark model
International Nuclear Information System (INIS)
Gomez Dumm, D.
2004-01-01
We study the properties of light pseudoscalar mesons in a nonlocal three flavor chiral quark model with nonlocal separable interactions. We consider the case of a Gaussian regulator, evaluating meson masses and decay constants. Our results are found to be in good agreement with empirical values, in particular, in the case of the ratio f κ /f π and the decay π 0 → γγ. The model leads also to a reasonable description of the observed phenomenology in the η-η ' sector, where two significantly different mixing angles are required. Detailed description of the work sketched here can be found in Ref. [1]. (author)
The quark mass and baryon numbers of empty chiral bags
International Nuclear Information System (INIS)
Jezabek, M.; Zalewski, K.
1984-01-01
We show that for spherical chiral bags the baryon number of the Dirac vacuum inside the bag does not depend on quark masses. Thus, the sum of the baryon numbers of an empty chiral bag and the skyrmion surrounding the bag is an integer, which depends on the boundary condition on the surface of the bag. This extends the result obtained by Goldstone and Jaffe for massless quarks. (orig.)
Quark Fragmentation to Pions in an Effective Chiral Theory
Directory of Open Access Journals (Sweden)
Yazaki K.
2010-04-01
Full Text Available A description of fragmentation functions which satisfy the momentum and isospin sum rules is presented in an eﬀective chiral quark theory of QCD. We concentrate on the pion fragmentation function, taking into account cascade-like processes in a generalized jet-model approach. Numerical results obtained in this NJL-jet model are presented and compared to empirical parametrizations.
Studies on phenomenological hadron models with chiral symmetry
International Nuclear Information System (INIS)
Rathske, E.
1991-12-01
In this report we consider, in the context of phenomenological models for hadrons, several aspects of Skyrme-type and hybrid bag models. In the first of the two central parts we discuss two qualitatively different generalizations of the minimal SU(2) Skyrme model. One of these consists in adding to the Lagrangian density a symmetric term of fourth order in the field derivatives. Its consequences are determined for solutions and observables by analytical and numerical investigations. In the other we propose a contribution for explicit isospin symmetry breaking in the mesonic as well as the baryonic sector. Together with the standard nonlinear σ-model term it allows for exact time-dependent classical soliton solutions. Their quantization leads to a quantitative connection between the hadronic isospin mass differenced of pions and nucleons. The second main part of this report is devoted to the generalization of SU(2) bag models under the aspect of chiral symmetry. We first show that the construction of appropriate surface terms in the Lagrangian density necessitates the introduction of dynamical bosonic degrees of freedom. This allows for a variety of bag scenarios (including the 'endopionic' bag). We then consider explicit isospin symmetry breaking for hybrid bag models with a nonlinear mesonic sector. An intimate relationship is revealed between the effects of a quark mass difference and the time-dependent bosonic solutions found for the purely mesonic case. It is reflected in a nontrivial interdependence between quark and meson masses, bag radius and chiral angle. We provide an especially extensive list of references for the topics discussed in this report. (orig.) [de
Quark propagator and the chiral condensate in an instanton vacuum
International Nuclear Information System (INIS)
D'yakonov, D.I.; Petrov, V.Yu.
1985-01-01
A new mechanism of spontaneous breaking of chiral symmetry of strong interactions in instanton vacuum of quantum chromodynamics is proposed. The mechanism is based on the collectivization of zero fermion modes of individual instantons in a medium of pseudoparticles. The quark propagator in an instanton medium is found, and it is shown that the massless pole of the free propagator cancels out and quark acquires an effective mass which depends on the momentum. By employjng the characteristics of the instanton medium which was found previously, the value of the chiral condensate and the effective mass of the quark is obtained which is in good agreement with the phenomenology
Chiral Spirals from Discontinuous Chiral Symmetry
Kojo, Toru
2014-09-01
Recently phases of the inhomongeneous chiral condensates (IChC) attract renewed attentions in quark matter context. A number of theoretical studies have suggested that in some domain of moderate quark density the IChC phases are energetically more favored than the normal, chiral symmetric phase. In particular, the NJL-type model studies indicate that the phase of IChCs may mask the usual 1st order chiral phase transition line and its critical end point, and might change the conventional wisdom. In this talk, I will discuss characteristic features of the IChC phases and their potential impacts on the compact star physics. In particular, some of the IChC phases open gaps near the quark Fermi surface, suppressing back-reaction from the quark to gluon sectors. This mechanism delays the chiral restoration in the strange quark sector, forbids the emergence of the large bag constant, and as a consequence, makes the quark matter EOS very stiff. Recently phases of the inhomongeneous chiral condensates (IChC) attract renewed attentions in quark matter context. A number of theoretical studies have suggested that in some domain of moderate quark density the IChC phases are energetically more favored than the normal, chiral symmetric phase. In particular, the NJL-type model studies indicate that the phase of IChCs may mask the usual 1st order chiral phase transition line and its critical end point, and might change the conventional wisdom. In this talk, I will discuss characteristic features of the IChC phases and their potential impacts on the compact star physics. In particular, some of the IChC phases open gaps near the quark Fermi surface, suppressing back-reaction from the quark to gluon sectors. This mechanism delays the chiral restoration in the strange quark sector, forbids the emergence of the large bag constant, and as a consequence, makes the quark matter EOS very stiff. NSF Grants PHY09-69790, PHY13-05891.
Specific heat of the chiral-soliton-lattice phase in Yb(Ni0.94Cu0.06)3Al9
Ninomiya, Hiroki; Sato, Takaaki; Inoue, Katsuya; Ohara, Shigeo
2018-05-01
We have studied the monoaxial-chiral helimagnet YbNi3Al9 and its-substituted analogue Yb(Ni0.94Cu0.06)3Al9. These compounds belong to a chiral space group R32. In Yb(Ni0.94Cu0.06)3Al9 with the magnetic ordering temperature TM = 6.4 K , only when the magnetic field is applied perpendicular to the helical axis, the chiral soliton lattice is observed below Hc = 10 kOe . YbNi3Al9 with TM = 3.4 K exhibits a metamagnetic transition at Hc = 1 kOe in 2 K. To study the formation of chiral helimagnetic state and chiral soliton lattice, we have measured the specific heat in magnetic fields applied parallel and perpendicular to the helical axis. In zero field, with decreasing temperature, specific heat shows λ-type phase transition from paramagnetic state to chiral helimagnetic one. At the temperature where the chiral soliton lattice emerges, we have found that the specific heat shows a sharp peak. In addition, at around the crossover between paramagnetic state and forced-ferromagnetic one, a broad maximum has been observed. We have determined the magnetic phase diagrams of YbNi3Al9 and Yb(Ni0.94Cu0.06)3Al9.
International Nuclear Information System (INIS)
Peng Jinsong; Meng Chengju; Pan Jihuan; Yuan Tongquan; Zhou Lijuan; Ma Weixing
2013-01-01
Based on the fully dressed quark propagator and chiral perturbation theory, we study the ratio of the strange quark mass m s to up or down quark mass m u,d . The ratio is related to the determination of quark masses which are fundamental input parameters of QCD Lagrangian in the Standard Model of particle physics and can not be directly measured since the quark is confined within a hadron. An accurate determination of these QCD free parameters is extremely important for both phenomenological and theoretical applications. We begin with a brief introduction to the non-perturbation QCD theory, and then study the mass ratio in the framework of the chiral perturbation theory (χPT) with a parameterized fully dressed quark propagator which describes confining fully dressed quark propagation and is analytic everywhere in the finite complex p 2 -plane and has no Lehmann representation so there are no quark production thresholds in any theoretical calculations of observable data. Our prediction for the ratio m s /m u,d is consistent with other model predictions such as Lattice QCD, instanton model, QCD sum rules and the empirical values used widely in the literature. As a by-product of this study, our theoretical results, together with other predictions of physical quantities that used this quark propagator in our previous publications, clearly show that the parameterized form of the fully dressed quark propagator is an applicable and reliable approximation to the solution of the Dyson-Schwinger Equation of quark propagator in the QCD. (authors)
The quark presence in nuclei: Dynamics of a dilute system of nontopological solitons
International Nuclear Information System (INIS)
Shakin, C.M.
1985-01-01
The authors discuss a model of relativistic nuclear matter in which the nucleons have a quark substructure. They are able to calculate the electromagnetic form factors of the nucleon and show how these form factors are modified in nuclear matter from their values in vacuum. The authors use this model to argue that the quark presence in nuclei is already manifest in relatively low-momentum-transfer experiments, q/sup 2/≅ -0.2 (GeV/c)/sup 2/. As an example, the authors discuss the data for the separated longitudinal and transverse response for the separated longitudinal and transverse response functions for (e, e') inclusive reactions near the nucleon quasi-elastic peak. The basis of formalism is the observation that the nucleus can be considered as a dilute system of nontopological solitons and therefore, to a good approximation, the authors can neglect effects due to ''overlapping nucleons.'' They stress, however, that the solitons move in intense fields of Lorentz scalar and vector character which modify their properties. Calculations of such mean-field effects are much easier to perform than calculations of effects which might arise from the overlap of nucleons
Chiral bag model with constituent quarks: topological and nontopological decisions
International Nuclear Information System (INIS)
Malakhov, I.Yu.; Sveshnikov, K.A.; Fedorov, S.M.; Khalili, M.F.
2002-01-01
The three-phase modification of the hybrid chiral bag containing along with asymptotic freedom and hadronization phases and also intermediate phase of the constituent quarks is considered. The self-consistent solutions of the equations of the model in the (1 + 1)-dimensional case are determined with an account of the fermion vacuum polarization effects. The bag renormalized complete energy is studied as a function of the parameters characterizing the bag geometry and its topological (baryon) charge. It is shown that for nonzero topological charge there exists the whole series of configurations representing the local minima of the bag complete energy and containing all three phases, whereas the bag energy minimum in the nontopological case corresponds to zero dimensions of the area corresponding to asymptotic freedom phase [ru
Distinguishing standard model extensions using monotop chirality at the LHC
Energy Technology Data Exchange (ETDEWEB)
Allahverdi, Rouzbeh [Department of Physics and Astronomy, University of New Mexico,Albuquerque, NM 87131 (United States); Dalchenko, Mykhailo; Dutta, Bhaskar [Department of Physics and Astronomy,Mitchell Institute for Fundamental Physics and Astronomy, Texas A& M University,College Station, TX 77843-4242 (United States); Flórez, Andrés [Departamento de Física, Universidad de los Andes,Bogotá, Carrera 1 18A-10, Bloque IP (Colombia); Gao, Yu [Department of Physics and Astronomy,Mitchell Institute for Fundamental Physics and Astronomy, Texas A& M University,College Station, TX 77843-4242 (United States); Kamon, Teruki [Department of Physics and Astronomy,Mitchell Institute for Fundamental Physics and Astronomy, Texas A& M University,College Station, TX 77843-4242 (United States); Department of Physics, Kyungpook National University,Daegu 702-701 (Korea, Republic of); Kolev, Nikolay [Department of Physics, University of Regina,SK, S4S 0A2 (Canada); Mueller, Ryan [Department of Physics and Astronomy,Mitchell Institute for Fundamental Physics and Astronomy, Texas A& M University,College Station, TX 77843-4242 (United States); Segura, Manuel [Departamento de Física, Universidad de los Andes,Bogotá, Carrera 1 18A-10, Bloque IP (Colombia)
2016-12-13
We present two minimal extensions of the standard model, each giving rise to baryogenesis. They include heavy color-triplet scalars interacting with a light Majorana fermion that can be the dark matter (DM) candidate. The electroweak charges of the new scalars govern their couplings to quarks of different chirality, which leads to different collider signals. These models predict monotop events at the LHC and the energy spectrum of decay products of highly polarized top quarks can be used to establish the chiral nature of the interactions involving the heavy scalars and the DM. Detailed simulation of signal and standard model background events is performed, showing that top quark chirality can be distinguished in hadronic and leptonic decays of the top quarks.
Energy Technology Data Exchange (ETDEWEB)
Albaladejo, M.; Fernandez-Soler, P.; Nieves, J.; Ortega, P.G. [Centro Mixto CSIC-Universidad de Valencia, Instituto de Fisica Corpuscular (IFIC), Institutos de Investigacion de Paterna, Aptd. 22085, Valencia (Spain)
2017-03-15
The discovery of the D{sup *}{sub s0}(2317) and D{sub s1}(2460) resonances in the charmed-strange meson spectra revealed that formerly successful constituent quark models lose predictability in the vicinity of two-meson thresholds. The emergence of non-negligible effects due to meson loops requires an explicit evaluation of the interplay between Q anti q and (Q anti q)(q anti q) Fock components. In contrast to the c anti s sector, there is no experimental evidence of J{sup P} = 0{sup +}, 1{sup +} bottom-strange states yet. Motivated by recent lattice studies, in this work the heavy-quark partners of the D{sub s0}{sup *}(2317) and D{sub s1}(2460) states are analyzed within a heavy meson chiral unitary scheme. As a novelty, the coupling between the constituent quark-model P-wave anti B{sub s} scalar and axial mesons and the anti B{sup (*)}K channels is incorporated employing an effective interaction, consistent with heavy-quark spin symmetry, constrained by the lattice energy levels. (orig.)
B meson excitations with chirally improved light quarks
Energy Technology Data Exchange (ETDEWEB)
Burch, Tommy [University of Regensburg (Germany); University of Utah (United States); Chakrabarti, Dipanker [University of Regensburg (Germany); Swansea University (United Kingdom); Hagen, Christian; Maurer, Thilo; Schaefer, Andreas [University of Regensburg (Germany); Lang, Christian; Limmer, Markus [University of Graz (Austria)
2008-07-01
We present our latest results for the excitations of static-light mesons on both quenched and unquenched lattices, where the light quarks are simulated using the chirally improved (CI) lattice Dirac operator. To improve our results we use a new technique to estimate the light quark propagator. The b quark is treated as infinitely heavy, in the so-called static approximation. We are able to find several excited states reaching from S-waves up to D-waves for both B and B{sub s}.
Excited meson spectroscopy with two chirally improved quarks
Engel, G.; Lang, C. B.; Mohler, D.; Limmer, M.; Schäfer, A.
The excited isovector meson spectrum is explored using two chirally improved dynamical quarks. Seven ensembles, with pion masses down to \\approx 250 MeV are discussed and used for extrapolations to the physical point. Strange mesons are investigated using partially quenched s-quarks. Using the variational method, we extract excited states in several channels and most of the results are in good agreement with experiment.
Chiral symmetry and nucleon structure: Low energy aspects
International Nuclear Information System (INIS)
Weise, W.
1989-01-01
The symmetries and currents of QCD at low energy and long wavelength are realized in the form of mesons, rather than quarks and gluons. In this talk I summarize the merits, but also the limits, of chiral non-linear meson theories and their soliton solutions, in descriptions of nucleon structure and the nucleon-nucleon interaction. (orig.)
Effective field theories of baryons and mesons, or, what do quarks do?
International Nuclear Information System (INIS)
Keaton, G.L.
1995-01-01
This thesis is an attempt to understand the properties of the protons, pions and other hadrons in terms of their fundamental building blocks. In the first chapter the author reviews several of the approaches that have already been developed. The Nambu-Jona-Lasinio model offers the classic example of a derivation of meson properties from a quark Lagrangian. The chiral quark model encodes much of the intuition acquired in recent decades. The author also discusses the non-linear sigma model, the Skyrme model, and the constituent quark model, which is one of the oldest and most successful models. In the constituent quark model, the constituent quark appears to be different from the current quark that appears in the fundamental QCD Lagrangian. Recently it was proposed that the constituent quark is a topological soliton. In chapter 2 the author investigates this soliton, calculating its mass, radius, magnetic moment, color magnetic moment, and spin structure function. Within the approximations used, the magnetic moments and spin structure function cannot simultaneously be made to agree with the constituent quark model. In chapter 3 the author uses a different plan of attack. Rather than trying to model the constituents of the baryon, he begins with an effective field theory of baryons and mesons, with couplings and masses that are simply determined phenomenologically. Meson loop corrections to baryon axial currents are then computed in the 1/N expansion. It is already known that the one-loop corrections are suppressed by a factor 1/N; here it is shown that the two-loop corrections are suppressed by 1/N 2 . To leading order, these corrections are exactly the same as would be calculated in the constituent quark model. This method therefore offers a different approach to the constituent quark
Covariant, chirally symmetric, confining model of mesons
International Nuclear Information System (INIS)
Gross, F.; Milana, J.
1991-01-01
We introduce a new model of mesons as quark-antiquark bound states. The model is covariant, confining, and chirally symmetric. Our equations give an analytic solution for a zero-mass pseudoscalar bound state in the case of exact chiral symmetry, and also reduce to the familiar, highly successful nonrelativistic linear potential models in the limit of heavy-quark mass and lightly bound systems. In this fashion we are constructing a unified description of all the mesons from the π through the Υ. Numerical solutions for other cases are also presented
$Z_b(10650)$ and $Z_b(10610)$ states in a chiral quark model
Li, M. T.; Wang, W. L.; Dong, Y. B.; Zhang, Z. Y.
2012-01-01
We perform a systematic study of $B\\bar{B}^*$, $B^*\\bar{B}^*$, $D\\bar{D}^*$ and $D^*\\bar{D}^*$ systems by using effective interaction in our chiral quark model. Our results show that the interactions of $B\\bar{B}^*$, $B^*\\bar{B}^*$, $D\\bar{D}^*$ and $D^*\\bar{D}^*$ states are attractive, which consequently result in $B\\bar{B}^*$, $B^*\\bar{B}^*$, $D\\bar{D}^*$ and $D^*\\bar{D}^*$ bound states. The recent observed exotic-like hadrons of $Z_b(10610)$ and $Z_b(10650)$ are, therefore in our approach,...
Scalar mesons and glueballs in a chiral U(3)xU(3) quark model with 't Hooft interaction
International Nuclear Information System (INIS)
Nagy, M.; Volkov, M.K.; Yudichev, V.L.
2000-01-01
In a U(3)xU(3) quark chiral model of the Nambu-Jona-Lasino (NJL) type with the 't Hooft interaction, the ground scalar isoscalar mesons and a scalar glueball are described. The glueball (dilaton) is introduced into the effective meson Lagrangian written in a chirally symmetric form on the basis of scale invariance. The singlet-octet mixing of scalar isoscalar mesons and their mixing with the glueball are taken into account. Mass spectra of the scalar mesons and glueball and their strong decays are described
International Nuclear Information System (INIS)
Wilets, L.
1988-01-01
Soliton models are well-suited for dynamical calculations, such as hadron-hadron interactions and collisions, since for each variable in the Lagrangian the time derivative of that variable also appears. For such models, constrained (deformed) mean field solutions provide a basis for generator coordinate dynamical calculations. This requires the solution of a large number of coupled, nonlinear, differential equations involving the quark and scalar fields. The Henyey-Wilets method reduces the problem to the solution of a set of coupled, linear, inhomogeneous, differential equations to be iterated. In the chromodielectric model, color confinement is effected by the self and mutual interactios of the quarks through the chromelectric field. This requires the self-consistent calculation of the gluon propagator in a spatially varying dielectric function. This now involves the solution of a set of coupled, nonlinear integro-differential equations, which can be linearized and solved by iterations. The problem is computation intensive. 20 refs
Toy model for two chiral nonets
International Nuclear Information System (INIS)
Fariborz, Amir H.; Jora, Renata; Schechter, Joseph
2005-01-01
Motivated by the possibility that nonets of scalar mesons might be described as mixtures of 'two quark' and 'four quark' components, we further study a toy model in which corresponding chiral nonets (containing also the pseudoscalar partners) interact with each other. Although the 'two quark' and 'four quark' chiral fields transform identically under SU(3) L xSU(3) R transformations, they transform differently under the U(1) A transformation which essentially counts total (quark+antiquark) content of the mesons. To implement this, we formulate an effective Lagrangian which mocks up the U(1) A behavior of the underlying QCD. We derive generating equations which yield Ward identity type relations based only on the assumed symmetry structure. This is applied to the mass spectrum of the low lying pseudoscalars and scalars, as well as their 'excitations'. Assuming isotopic spin invariance, it is possible to disentangle the amount of 'two quark' vs 'four quark' content in the pseudoscalar π,K,η-type states and in the scalar κ-type states. It is found that a small 'four quark' content in the lightest pseudoscalars is consistent with a large 'four quark' content in the lightest of the scalar κ mesons. The present toy model also allows one to easily estimate the strength of a 'four quark' vacuum condensate. There seems to be a rich and interesting structure
Some Relations for Quark Confinement and Chiral Symmetry Breaking in QCD
Directory of Open Access Journals (Sweden)
Suganuma Hideo
2017-01-01
Full Text Available We analytically study the relation between quark confinement and spontaneous chiral-symmetry breaking in QCD. In terms of the Dirac eigenmodes, we derive some formulae for the Polyakov loop, its fluctuations, and the string tension from the Wilson loop. We also investigate the Polyakov loop in terms of the eigenmodes of theWilson, the clover and the domain wall fermion kernels, respectively. For the confinement quantities, the low-lying Dirac/fermion eigenmodes are found to give negligible contribution, while they are essential for chiral symmetry breaking. These relations indicate no direct one-to-one correspondence between confinement and chiral symmetry breaking in QCD, which seems to be natural because confinement is realized independently of the quark mass.
Quark disconnected diagrams in chiral perturbation theory
Della Morte, Michele
2010-01-01
We show how quark-disconnected and quark-connected contributions to hadronic n-point functions can be written as independent correlators for which one can derive expressions in partially quenched chiral effective theory. As an example we apply the idea to the case of the hadronic vacuum polarisation. In particular, we consider the cases of the Nf = 2 theory without and with a partially quenched strange quark and also the Nf = 2 + 1 theory. In the latter two cases a parameter-free prediction for the disconnected contribution at NLO in the effective theory is given. Finally we show how twisted boundary conditions can then be used in lattice QCD to improve the q^2 resolution in the connected contributions even when flavour singlet operators are considered.
Thermodynamics of lattice QCD with 2 quark flavours : chiral symmetry and topology
International Nuclear Information System (INIS)
Lagae, J.-F.
1998-01-01
We have studied the restoration of chiral symmetry in lattice QCD at the finite temperature transition from hadronic matter to a quark-gluon plasma. By measuring the screening masses of flavour singlet and non-singlet meson excitations, we have seen evidence that, although flavour chiral symmetry is restored at this transition, flavour singlet (U(1)) axial symmetry is not. We conclude that this indicates that instantons continue to play an important role in the quark-gluon plasma phase
Chiral phase transition in a covariant nonlocal NJL model
International Nuclear Information System (INIS)
General, I.; Scoccola, N.N.
2001-01-01
The properties of the chiral phase transition at finite temperature and chemical potential are investigated within a nonlocal covariant extension of the NJL model based on a separable quark-quark interaction. We find that for low values of T the chiral transition is always of first order and, for finite quark masses, at certain end point the transition turns into a smooth crossover. Our predictions for the position of this point is similar, although somewhat smaller, than previous estimates. (author)
Recent status of the chiral bag model
International Nuclear Information System (INIS)
Hosaka, Atsushi; Toki, Hiroshi.
1995-01-01
In this note, recent status of the chiral bag model is presented. As it combines the MIT quark bag model and the Skyrme model, the chiral bag model interpolates the two models smoothly as a function of the chiral bag radius R. The correct limit of R → ∞ is reproduced by including the higher order terms in the Ω expansion of the cranking method. It resolves the so-called small g A problem in a class of models where the semiclassical method is used. (author)
Topological and nontopological solutions for the chiral bag model with constituent quarks
International Nuclear Information System (INIS)
Sveshnikov, K.; Malakhov, I.; Khalili, M.; Fedorov, S.
2002-01-01
The three-phase version of the hybrid chiral bag model, containing the phase of asymptotic freedom, the hadronization phase as well as the intermediate phase of constituent quarks is proposed. For this model the self-consistent solutions of different topology are found in (1 + 1)D with due regard for fermion vacuum polarization effects. The renormalized total energy of the bag is studied as a function of its geometry and topological charge. It is shown that in the case of nonzero topological charge there exists a set of configurations being the local minima of the total energy of the bag and containing all the three phases, while in the nontopological case the minimum of the total energy of the bag corresponds to vanishing size of the phase of asymptotic freedom
The nucleon as a topological chiral soliton
International Nuclear Information System (INIS)
Rho, M.
1983-10-01
Through topology, baryon charge ''leaks'' from a confinement region into a meson-cloud region. This suggests that there is a sort of topological equivalence principle which renders physically equivalent the Skyrmion description with a zero bag radius and the chiral bag description with a non-zero bag radius. The issue as to whether future nuclear physics experiments will reveal a ''smoking gun'' evidence for a quark presence in nuclei is discussed in the light of the recently discovered topological structure
Form factors in the projected linear chiral sigma model
International Nuclear Information System (INIS)
Alberto, P.; Coimbra Univ.; Bochum Univ.; Ruiz Arriola, E.; Fiolhais, M.; Urbano, J.N.; Coimbra Univ.; Goeke, K.; Gruemmer, F.; Bochum Univ.
1990-01-01
Several nucleon form factors are computed within the framework of the linear chiral soliton model. To this end variational means and projection techniques applied to generalized hedgehog quark-boson Fock states are used. In this procedure the Goldberger-Treiman relation and a virial theorem for the pion-nucleon form factor are well fulfilled demonstrating the consistency of the treatment. Both proton and neutron charge form factors are correctly reproduced, as well as the proton magnetic one. The shapes of the neutron magnetic and of the axial form factors are good but their absolute values at the origin are too large. The slopes of all the form factors at zero momentum transfer are in good agreement with the experimental data. The pion-nucleon form factor exhibits to great extent a monopole shape with a cut-off mass of Λ=690 MeV. Electromagnetic form factors for the vertex γNΔ and the nucleon spin distribution are also evaluated and discussed. (orig.)
International Nuclear Information System (INIS)
Walliser, Hans
2000-01-01
Chiral Lagrangians as effective field theories of QCD are successfully applied to meson physics in the framework of chiral perturbation theory. Because of their nonlinear structure these Lagrangians allow for static soliton solutions interpreted as baryons. Their semiclassical quantization, which provides the leading order in an 1/N C expansion with N C the number of colors, turned out to be insufficient to obtain satisfactory agreement with empirical baryon observables. However with N C =3, large corrections are expected in the next-to-leading order carried by mesonic fluctuations around the soliton background, which require renormalization to 1-loop. In contrast to chiral perturbation theory, the low-energy Lagrangian proves inapt and terms with an arbitrary number of gradients may in principle contribute. Assumptions about the a priori unknown higher chiral orders are tested by the scale-dependence of the results. For example, in the simple Sine-Gordon model with 1 scalar field in 1+1 dimensions, knowledge of the low-energy behavior together with the mere existence of an underlying 1-loop renormalizable scale-independent solitonic theory is sufficient to regain the full solution. Baryonic observables calculated within that framework generally lead to better agreement with experiment except for the axial quantities. For these quantities the 1/N C expansion does not converge sufficiently fast because the current algebra mixes different N C orders
Vortex in the chiral quark model
Hadasz, Leszek
1995-02-01
We construct the classical vortex solution in the model of chiral field interacting with the non-Abelian SU(2) gauge field. This solution is topologically nontrivial and well localized. We discuss its relevance for effective hadron models based on the flux-tube picture and the possibility of its extension to the higher symmetry gauge groups SU(N).
Unified Chiral models of mesons and baryons
International Nuclear Information System (INIS)
Mendez-Galain, R.; Ripka, G.
1990-01-01
Unified Chiral models of mesons and baryons are presented. Emphasis is placed on the underlying quark structure of hadrons including the Skyrmion. The Nambu Jona-Lasinio model with vector mesons is discussed
Sakai-Sugimoto model, tachyon condensation and chiral symmetry breaking
International Nuclear Information System (INIS)
Dhar, Avinash; Nag, Partha
2008-01-01
We modify the Sakai-Sugimoto model of chiral symmetry breaking to take into account the open string tachyon which stretches between the flavour D8-branes and D8-bar-branes. There are several reasons of consistency for doing this: (i) Even if it might be reasonable to ignore the tachyon in the ultraviolet where the flavour branes and antibranes are well separated and the tachyon is small, it is likely to condense and acquire large values in the infrared where the branes meet. This takes the system far away from the perturbatively stable minimum of the Sakai-Sugimoto model; (ii) The bifundamental coupling of the tachyon to fermions of opposite chirality makes it a suitable candidate for the quark mass and chiral condensate parameters. We show that the modified Sakai-Sugimoto model with the tachyon present has a classical solution satisfying all the desired consistency properties. In this solution chiral symmetry breaking coincides with tachyon condensation. We identify the parameters corresponding to the quark mass and the chiral condensate and also briefly discuss the mesonic spectra
Analytical Formulae linking Quark Confinement and Chiral Symmetry Breaking
International Nuclear Information System (INIS)
Doi, Takahiro M.; Redlich, Krzysztof; Sasaki, Chihiro; Suganuma, Hideo
2016-01-01
Dirac spectrum representations of the Polyakov loop fluctuations are derived on the temporally odd-number lattice, where the temporal length is odd with the periodic boundary condition. We investigate the Polyakov loop fluctuations based on these analytical relations. It is semi-analytically and numerically found that the low-lying Dirac eigenmodes have little contribution to the Polyakov loop fluctuations, which are sensitive probe for the quark deconfinement. Our results suggest no direct one-to-one corresponding between quark confinement and chiral symmetry breaking in QCD
About chiral models of dense matter and its magnetic properties
International Nuclear Information System (INIS)
Kutschera, M.
1990-12-01
The chiral models of dense nucleon matter are discussed. The quark matter with broken chiral symmetry is described. The magnetic properties of dense matter are presented and conclusions are given. 37 refs. (A.S.)
Lattice QCD with light quark masses: Does chiral symmetry get broken spontaneously
International Nuclear Information System (INIS)
Barbour, I.M.; Schierholz, G.; Teper, M.; Gilchrist, J.P.; Schneider, H.
1983-03-01
We present a first direct calculation of the properties of QCD for the small quark masses of phenomenological interest without extrapolations. We describe methods specially adapted to invert the fermion matrix at small quark masses. We use these methods to calculate directly on presently used lattice sizes with different boundary conditions. As is to be expected for a finite system, we do not observe spontaneous chiral symmetry breaking. By comparing the results obtained on lattices of different size we see, however, indications that are consistent with eventual spontaneous chiral symmetry breaking in the infinite volume limit. Our calculations underline the importance of using antiperiodic boundary conditions for fermions. (orig.)
Symmetry, structure, and dynamics of monoaxial chiral magnets
International Nuclear Information System (INIS)
Togawa, Yoshihiko; Kousaka, Yusuke; Inoue, Katsuya; Kishine, Jun-ichiro
2016-01-01
Nontrivial spin orders with magnetic chirality emerge in a particular class of magnetic materials with structural chirality, which are frequently referred to as chiral magnets. Various interesting physical properties are expected to be induced in chiral magnets through the coupling of chiral magnetic orders with conduction electrons and electromagnetic fields. One promising candidate for achieving these couplings is a chiral spin soliton lattice. Here, we review recent experimental observations mainly carried out on the monoaxial chiral magnetic crystal CrNb_3S_6 via magnetic imaging using electron, neutron, and X-ray beams and magnetoresistance measurements, together with the strategy for synthesizing chiral magnetic materials and underlying theoretical backgrounds. The chiral soliton lattice appears under a magnetic field perpendicular to the chiral helical axis and is very robust and stable with phase coherence on a macroscopic length scale. The tunable and topological nature of the chiral soliton lattice gives rise to nontrivial physical properties. Indeed, it is demonstrated that the interlayer magnetoresistance scales to the soliton density, which plays an essential role as an order parameter in chiral soliton lattice formation, and becomes quantized with the reduction of the system size. These interesting features arising from macroscopic phase coherence unique to the chiral soliton lattice will lead to the exploration of routes to a new paradigm for applications in spin electronics using spin phase coherence. (author)
Structure of the vacuum in the color dielectric model: confinement and chiral symmetry
International Nuclear Information System (INIS)
Mazzolo, A.
1992-01-01
Two of the most important properties of Quantum Chromodynamic (QCD), spontaneous symmetry breaking of the vacuum and quark confinement at low energy, are first presented. Some important effective models for hadronic physics are then described. Putting QCD on the lattice and using the block-spin method, the color-dielectric model effective Lagrangian is obtained. The structure of the vacuum and the behaviour of uniform quark matter at high intensity are investigated in this model. Its original formulation is extended to handle chiral symmetry (by use of sigma model) and to include negative energy orbitals. At high baryonic density, the model describes the two phase transitions which are expected in QCD: deconfinement of quarks and chiral symmetry restoration. Finally, a heavy meson composed by a charmed quark anti-quark pair, is constructed, and the valence quarks confinement and the vacuum structure around them are studied
Analysis of a classical chiral bag model
International Nuclear Information System (INIS)
Nadeau, H.
1985-01-01
The author studies a classical chiral bag model with a Mexican hat-type potential for the self-coupling of the pion fields. He assumes a static spherical bag of radius R, the hedgehog ansatz for the chiral fields and that the quarks are all in the lowest lying s state. The author has considered three classes of models, the cloudy or pantopionic bags, the little or exopionic bags and the endopionic bags, where the pions are allowed all through space, only outside the bag and only inside the bag respectively. In all cases, the quarks are confined in the interior. He calculates the bag radius R, the bag constant B and the total ground state energy R for wide ranges of the two free parameters of the theory, namely the coupling constant λ and the quark frequency omega. The author focuses the study on the endopionic bags, the least known class, and compares the results with the familiar ones of other classes
Khunjua, T. G.; Klimenko, K. G.; Zhokhov, R. N.
2018-03-01
In this paper the phase structure of dense quark matter has been investigated at zero temperature in the presence of baryon, isospin and chiral isospin chemical potentials in the framework of massless (3 +1 )-dimensional Nambu-Jona-Lasinio model with two quark flavors. It has been shown that in the large-Nc limit (Nc is the number of colors of quarks) there exists a duality correspondence between the chiral symmetry breaking phase and the charged pion condensation one. The key conclusion of our studies is the fact that chiral isospin chemical potential generates charged pion condensation in dense quark matter with isotopic asymmetry.
Chiral magnetic effect in the anisotropic quark-gluon plasma
International Nuclear Information System (INIS)
Ali-Akbari, Mohammad; Taghavi, Seyed Farid
2015-01-01
An anisotropic thermal plasma phase of a strongly coupled gauge theory can be holographically modelled by an anisotropic AdS black hole. The temperature and anisotropy parameter of the AdS black hole background of interest http://dx.doi.org/10.1007/JHEP07(2011)054 is specified by the location of the horizon and the value of the Dilaton field at the horizon. Interestingly, for the first time, we obtain two functions for the values of the horizon and Dilaton field in terms of the temperature and anisotropy parameter. Then by introducing a number of spinning probe D7-branes in the anisotropic background, we compute the value of the chiral magnetic effect (CME). We observe that in the isotropic and anisotropic plasma the value of the CME is equal for the massless quarks. However, at fixed temperature, raising the anisotropy in the system will increase the value of the CME for the massive quarks.
Anti-decuplet pentaquarks in the chiral quark-soliton model
International Nuclear Information System (INIS)
Ledwig, T.
2007-01-01
This thesis is an investigation of the anti-decuplet pentaquarks, especially the Θ + (udd anti s), within the framework of the χQSM. All baryon properties in this work are calculated by diagonalizing the χQSM Hamiltonian numerically and using these eigenvalues. Using the explicit dynamics of the χQSMenables us to investigate systematically properties of the octet, decuplet and anti-decuplet baryons, all of them within the same set of parameters. The χQSM is in good agreement with octet experimental data and since the new pentaquark discussion was triggered by the rotational picture of the χQSM, it is natural to extend this formalism to the anti-decuplet. At first we extract the mass of the Θ + in the χQSM. Among the results in this work, there are two of greater interest. In the light of the unsettled experimental situation the production/ formation of the Θ + plays an outstanding role. These processes are characterized by the coupling constants of the vector kaon and pseudo-scalar kaon coupling to the Θ-N system. In order to be compatible with experiments these coupling constants should be small. The vector kaon coupling strength can be extracted out of the vector-current via the vector-meson dominance. The vector-current will be subject of the third chapter. The pseudo-scalar kaon coupling is discussed in the fourth chapter along with the axial-vector current. By mapping the axial-vector constant to the strong coupling via the Goldberger-Treiman relation we are able to determine the Θ + decay width. Further aspects in case of the vector-current are the spatial sizes of the Θ + . We will determine the electric radii of the anti-decuplet baryons in order to distinguish whether the Θ + , minimal Fockcomponent of a five-quark state, is some kind of N-K molecule or a compact object like normal baryons. Magnetic anti-decuplet form factors are presented. Magnetic moments are also calculated for decuplet baryons. We consider the symmetry conserving
Institute of Scientific and Technical Information of China (English)
ZONG Hong-Shi; PING Jia-Lun; SUN Wei-Min; CHANG Chao-Hsi; WANG Fan
2002-01-01
We exhibit a method for obtaining the low chemical potential dependence of the dressed quark propagatorfrom an effective quark-quark interaction model. Within this approach we explore the chemical potential dependenceof the dressed-quark propagator, which provides a means of determining the behavior of the chiral and deconfinementorder parameters. A comparison with the results of previous researches is given.
Spontaneous chiral symmetry breaking and effective quark masses in quantum chromodynamics
International Nuclear Information System (INIS)
Miransky, V.A.
1982-01-01
The ultraviolet asymptotics of the dynamical effective quark mass is determined directly from the equation for the fermion mass function. The indications about the character of the dynamics of the spontaneous chiral symmetry breaking in QCD are obtained
Chiral symmetry breaking and the Banks-Casher relation in lattice QCD with Wilson quarks
Giusti, Leonardo
2009-01-01
The Banks--Casher relation links the spontaneous breaking of chiral symmetry in QCD to the presence of a non-zero density of quark modes at the low end of the spectrum of the Dirac operator. Spectral observables like the number of modes in a given energy interval are renormalizable and can therefore be computed using the Wilson formulation of lattice QCD even though the latter violates chiral symmetry at energies on the order of the inverse lattice spacing. Using numerical simulations, we find (in two-flavour QCD) that the low quark modes do condense in the expected way. In particular, the chiral condensate can be accurately calculated simply by counting the low modes on large lattices. Other spectral observables can be considered as well and have a potentially wide range of uses.
QCD and the chiral critical point
International Nuclear Information System (INIS)
Gavin, S.; Gocksch, A.; Pisarski, R.D.
1994-01-01
As an extension of QCD, consider a theory with ''2+1'' flavors, where the current quark masses are held in a fixed ratio as the overall scale of the quark masses is varied. At nonzero temperature and baryon density it is expected that in the chiral limit the chiral phase transition is of first order. Increasing the quark mass from zero, the chiral transition becomes more weakly first order, and can end in a chiral critical point. We show that the only massless field at the chiral critical point is a σ meson, with the universality class that of the Ising model. Present day lattice simulations indicate that QCD is (relatively) near to the chiral critical point
Searching for quantum solitons in a (3+1)-dimensional chiral Yukawa model
International Nuclear Information System (INIS)
Farhi, E.; Graham, N.; Jaffe, R.L.; Weigel, H.
2002-01-01
We search for static solitons stabilized by heavy fermions in a (3+1)-dimensional Yukawa model. We compute the renormalized energy functional, including the exact one-loop quantum corrections, and perform a variational search for configurations that minimize the energy for a fixed fermion number. We compute the quantum corrections using a phase shift parameterization, in which we renormalize by identifying orders of the Born series with corresponding Feynman diagrams. For higher-order terms in the Born series, we develop a simplified calculational method. When applicable, we use the derivative expansion to check our results. We observe marginally bound configurations at large Yukawa coupling, and discuss their interpretation as soliton solutions subject to general limitations of the model
An SU(5) grand unified model with hadrons as nontopological solitons. Pt. 1
International Nuclear Information System (INIS)
Chen Shihao
1994-01-01
A new grand unified model containing the known three generations of quark and lepton in which hadrons are regarded as nontopological solitons formed from quarks is presented. According to the model leptons and quarks are the same in essence. The differences between them are caused by spontaneous symmetry breaking. When a quark is located inside a hadron, its properties will be the same as those of a known quark and its mass very small. When a quark is outside hadrons, its properties will be the same as those of a known lepton, its mass very large and it will rapidly decay. Except defining charge Q 0 and fermion number F 0 which are exactly conserved, we also define interior colour, interior charge and interior fermion number approximately conserved inside a hadron. The (L-B) conservation in the known SU(5) model corresponds to the fermion number F 0 conservation in the present model
Solitons in bosonic effective theories versus underlying fermions
International Nuclear Information System (INIS)
Jayaraman, T.; Sharatchandra, H.S.
1984-11-01
We argue, using the Gross-Neveu model as an example, for the following picture: a baryon of baryon number B occasionally looks like a configuration of 3(B-W) quarks bound to a soliton (of the pionic condensate) with an integer winding number W. The Skyrmion picture in the original form is relevant if the lowest lying level of baryon number B is dominantly a soliton instead of a configuration of 3B quarks. Our techniques do not depend upon semi-classical or adiabatic approximations. (author)
Large degeneracy of excited hadrons and quark models
International Nuclear Information System (INIS)
Bicudo, P.
2007-01-01
The pattern of a large approximate degeneracy of the excited hadron spectra (larger than the chiral restoration degeneracy) is present in the recent experimental report of Bugg. Here we try to model this degeneracy with state of the art quark models. We review how the Coulomb Gauge chiral invariant and confining Bethe-Salpeter equation simplifies in the case of very excited quark-antiquark mesons, including angular or radial excitations, to a Salpeter equation with an ultrarelativistic kinetic energy with the spin-independent part of the potential. The resulting meson spectrum is solved, and the excited chiral restoration is recovered, for all mesons with J>0. Applying the ultrarelativistic simplification to a linear equal-time potential, linear Regge trajectories are obtained, for both angular and radial excitations. The spectrum is also compared with the semiclassical Bohr-Sommerfeld quantization relation. However, the excited angular and radial spectra do not coincide exactly. We then search, with the classical Bertrand theorem, for central potentials producing always classical closed orbits with the ultrarelativistic kinetic energy. We find that no such potential exists, and this implies that no exact larger degeneracy can be obtained in our equal-time framework, with a single principal quantum number comparable to the nonrelativistic Coulomb or harmonic oscillator potentials. Nevertheless we find it plausible that the large experimental approximate degeneracy will be modeled in the future by quark models beyond the present state of the art
International Nuclear Information System (INIS)
Joos, H.
1976-07-01
The main topics of these lectures are: phenomenological approach to quark confinement, standard Lagrangian of hadrondynamics, Lagrangian field theory and quark confinement, classical soliton solutions in a simple model, quantization of extended systems, colour charge screening and quantization on a lattice and remarks on applications. A survey of the scientific publications listed according to the topics until 26 March 1976 is supplemented. (BJ) [de
Hadronization of quark-diquark model for nucleon structure and nuclear force by path integral
International Nuclear Information System (INIS)
Nagata, Keitaro
2003-01-01
One of the central issues of the hadron physics is how to interpret the properties and the origin of nuclear force. Nuclear force is in principle the manifestation of dynamics of quarks and gluons but no trial has been successful yet in describing the nuclear force by using QCD, the fundamental theory of the strong interactions. Phenomenon related to the chiral symmetry and the spontaneous breaking of the chiral symmetry is one of the important phenomena for the understanding of hadron physics. Nambu-Jona-Lasinio (NJL) model is one of the quark system models to explain the phenomena concerning the chiral symmetry. Although the method to deduce the Lagrangian describing mesons by applying the path integral to NJL model has been well known as the bosonization, it has been difficult to extend it to baryons because baryons are three-body system. In this paper, a method is reported to deduce Lagrangian which describes baryon-meson from quark-diquark Lagrangian by assuming that baryons are the bound states of quark and diquark. (S. Funahashi)
Quark structure of nucleons: the third bag
International Nuclear Information System (INIS)
Wilets, L.
1983-01-01
The soliton bag model proposed by Friedberg and Lee is discussed. Unlike the other bag models, it treats the confining bag as a fully dynamical object. A scalar soliton field is introduced to effect confinement. The combined quark-soliton system (plus gluons, Higgs fields, counter terms) is described by a Hamiltonian or Lagrangian. The standard bag models do not have a complete Hamiltonian or Lagrangian. The resulting bag can undergo oscillations, rotations and dynamical distortions
The nucleon as soliton in an effective chiral theory with polarized Dirac sea
International Nuclear Information System (INIS)
Meissner, T.
1991-07-01
We consider the Nambu-Jona-Lasinio model for SU(2) flavor with N F = 3 color degrees of freedom and a current mass m o =m u =m d , which interact via scalar-isoscalar and pseudoscalar-isovectorial 4-point coupling of the strength G. We show that it is for the soft-poin limit essentially equivalent to treat the 4-quark theory in the HFA+BSE and the bozonized theory with classical meson fields, if the collective field π with the physical pion. By the requirement that in the vacuum the experimental values for the pion mass m π =139 MeV and the weak pion decay constant f π =93 MeV are reproduced finally only one free parameter remains, which is in our case the constituent quark mass M. All other parameters and vacuum quantities can be calculated as function of M. We do this for the UV cut-off parameter Λ, the 4-quark coupling strength G, the quark current mass m O as well as the vacuum condensate (anti qq)v. Thereby especially the influence of the regularization scheme on m O and (anti q)v is studied. For the construction of states with good spin and isospin quantum numbers we apply the semiclassical cranking procedure. Finally we compare the NJL with the chiral sigma model of Gell-Mann and Levi, which is connected with the NJL by the gradient respectively heat-kernel expansion. (orig./HSI) [de
Role of structural factors in formation of chiral magnetic soliton lattice in Cr{sub 1/3}NbS₂
Energy Technology Data Exchange (ETDEWEB)
Volkova, L. M.; Marinin, D. V. [Institute of Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok (Russian Federation)
2014-10-07
The sign and strength of magnetic interactions not only between nearest neighbors, but also for longer-range neighbors in the Cr{sub 1/3}NbS₂ intercalation compound have been calculated on the basis of structural data. It has been found that left-handed spin helices in Cr{sub 1/3}NbS₂ are formed from strength-dominant at low temperatures antiferromagnetic (AFM) interactions between triangular planes of Cr³⁺ ions through the plane of just one of two crystallographically equivalent diagonals of side faces of embedded into each other trigonal prisms building up the crystal lattice of magnetic Cr³⁺ ions. These helices are oriented along the c axis and packed into two-dimensional triangular lattices in planes perpendicular to these helices directions and lay one upon each other with a displacement. The competition of the above AFM helices with weaker inter-helix AFM interactions could promote the emergence of a long-period helical spin structure. One can assume that in this case, the role of Dzyaloshinskii-Moriya interaction consists of final ordering and stabilization of chiral spin helices into a chiral magnetic soliton lattice. The possibility of emergence of solitons in M{sub 1/3}NbX{sub 2} and M{sub 1/3}TaX₂ (M = Cr, V, Ti, Rh, Ni, Co, Fe, and Mn; X = S and Se) intercalate compounds has been examined. Two important factors caused by the crystal structure (predominant chiral magnetic helices and their competition with weaker inter-helix interactions not destructing the system quasi-one-dimensional character) can be used for the crystal chemistry search of solitons.
Effective field theory and the quark model
International Nuclear Information System (INIS)
Durand, Loyal; Ha, Phuoc; Jaczko, Gregory
2001-01-01
We analyze the connections between the quark model (QM) and the description of hadrons in the low-momentum limit of heavy-baryon effective field theory in QCD. By using a three-flavor-index representation for the effective baryon fields, we show that the 'nonrelativistic' constituent QM for baryon masses and moments is completely equivalent through O(m s ) to a parametrization of the relativistic field theory in a general spin-flavor basis. The flavor and spin variables can be identified with those of effective valence quarks. Conversely, the spin-flavor description clarifies the structure and dynamical interpretation of the chiral expansion in effective field theory, and provides a direct connection between the field theory and the semirelativistic models for hadrons used in successful dynamical calculations. This allows dynamical information to be incorporated directly into the chiral expansion. We find, for example, that the striking success of the additive QM for baryon magnetic moments is a consequence of the relative smallness of the non-additive spin-dependent corrections
International Nuclear Information System (INIS)
Anisovich, V.V.
1989-06-01
Using the language of the quarks and gluons for description of the soft hadron physics it is necessary to take into account two characteristic phenomena which prevent one from usage of QCD Lagrangian in the straightforward way, chiral symmetry breaking, and confinement of colour particles. The topics discussed in this context are: QCD in the domain of soft processes, phenomenological Lagrangian for soft processes and exotic mesons, spectroscopy of low-lying hadrons (mesons, baryons and mesons with heavy quarks - c,b -), confinement forces, spectral integration over quark masses. (author) 3 refs.; 19 figs.; 3 tabs
Gluon condensation and modelling of quark confinement in QCD-motivated Nambu-Jona-Lasinio model
International Nuclear Information System (INIS)
Bel'kov, A.A.; Ebert, D.; Emel'yanenko, A.V.
1992-01-01
The possibility of modelling of a quark propagator without poles realizing quark confinement is considered on the basis of a nonperturbative gluon propagator including gluon condensation and a dynamical gluon mass. The property of spontaneous chiral symmetry breaking is retained providing us with a reasonable pattern of low-lying meson properties. 2 figs.; 1 tab
Quark interchange model of baryon interactions
Energy Technology Data Exchange (ETDEWEB)
Maslow, J.N.
1983-01-01
The strong interactions at low energy are traditionally described by meson field theories treating hadrons as point-like particles. Here a mesonic quark interchange model (QIM) is presented which takes into account the finite size of the baryons and the internal quark structure of hadrons. The model incorporates the basic quark-gluon coupling of quantum chromodynamics (QCD) and the MIT bag model for color confinement. Because the quark-gluon coupling constant is large and it is assumed that confinement excludes overlap of hadronic quark bags except at high momenta, a non-perturbative method of nuclear interactions is presented. The QIM allows for exchange of quark quantum numbers at the bag boundary between colliding hadrons mediated at short distances by a gluon exchange between two quarks within the hadronic interior. This generates, via a Fierz transformation, an effective space-like t channel exchange of color singlet (q anti-q) states that can be identified with the low lying meson multiplets. Thus, a one boson exchange (OBE) model is obtained that allows for comparison with traditional phenomenological models of nuclear scattering. Inclusion of strange quarks enables calculation of YN scattering. The NN and YN coupling constants and the nucleon form factors show good agreement with experimental values as do the deuteron low energy data and the NN low energy phase shifts. Thus, the QIM provides a simple model of strong interactions that is chirally invariant, includes confinement and allows for an OBE form of hadronic interaction at low energies and momentum transfers.
Quark interchange model of baryon interactions
International Nuclear Information System (INIS)
Maslow, J.N.
1983-01-01
The strong interactions at low energy are traditionally described by meson field theories treating hadrons as point-like particles. Here a mesonic quark interchange model (QIM) is presented which takes into account the finite size of the baryons and the internal quark structure of hadrons. The model incorporates the basic quark-gluon coupling of quantum chromodynamics (QCD) and the MIT bag model for color confinement. Because the quark-gluon coupling constant is large and it is assumed that confinement excludes overlap of hadronic quark bags except at high momenta, a non-perturbative method of nuclear interactions is presented. The QIM allows for exchange of quark quantum numbers at the bag boundary between colliding hadrons mediated at short distances by a gluon exchange between two quarks within the hadronic interior. This generates, via a Fierz transformation, an effective space-like t channel exchange of color singlet (q anti-q) states that can be identified with the low lying meson multiplets. Thus, a one boson exchange (OBE) model is obtained that allows for comparison with traditional phenomenological models of nuclear scattering. Inclusion of strange quarks enables calculation of YN scattering. The NN and YN coupling constants and the nucleon form factors show good agreement with experimental values as do the deuteron low energy data and the NN low energy phase shifts. Thus, the QIM provides a simple model of strong interactions that is chirally invariant, includes confinement and allows for an OBE form of hadronic interaction at low energies and momentum transfers
Vector and Axial-Vector Correlators in AN Instanton-Like Quark Model
Dorokhov, Alexander E.
The behavior of the vector Adler function at spacelike momenta is studied in the framework of a covariant chiral quark model with instanton-like quark-quark interaction. This function describes the transition between the high energy asymptotically free region of almost massless current quarks to the low energy hadronized regime with massive constituent quarks. The model reproduces the Adler function and V-A correlator extracted from the ALEPH and OPAL data on hadronic τ lepton decays, transformed into the Euclidean domain via dispersion relations. The leading order contribution from hadronic part of the photon vacuum polarization to the anomalous magnetic moment of the muon, aμ hvp(1), is estimated.
QCD with two light dynamical chirally improved quarks: Mesons
Engel, Georg P.; Lang, C. B.; Limmer, Markus; Mohler, Daniel; Schäfer, Andreas
2012-02-01
We present results for the spectrum of light and strange mesons on configurations with two flavors of mass-degenerate Chirally Improved sea quarks. The calculations are performed on seven ensembles of lattice size 163×32 at three different gauge couplings and with pion masses ranging from 250 to 600 MeV. To reliably extract excited states, we use the variational method with an interpolator basis containing both Gaussian and derivative quark sources. Both conventional and exotic channels up to spin 2 are considered. Strange quarks are treated within the partially quenched approximation. For kaons we investigate the mixing of interpolating fields corresponding to definite C-parity in the SU(3) limit. This enlarged basis allows for an improved determination of the low-lying kaon spectrum. In addition to masses we also extract the ratio of the pseudoscalar decay constants of the kaon and pion and obtain FK/Fπ=1.215(41). The results presented here include some ensembles from previous publications and the corresponding results supersede the previously published values.
The baryon-baryon interaction in a modified quark model
International Nuclear Information System (INIS)
Zhang Zongye; Faessler, Amand; Straub, U.; Glozman, L.Ya.
1994-01-01
The quark-cluster model with coupling constants constraint by chiral symmetry is extended to include strange quarks. In this model, besides the confinement and one-gluon exchange potentials, the pseudoscalar mesons and sigma (σ) meson exchanges are included as the nonperturbative effect. Using this interaction we studied the binding energy of the deuteron, the NN scattering phase shifts and the hyperon-nucleon cross sections in the framework of the resonating group method (RGM). The results are reasonably consistent with experiments. ((orig.))
Chiral phase transition in the soft-wall model of AdS/QCD
International Nuclear Information System (INIS)
Chelabi, Kaddour; Fang, Zhen; Huang, Mei; Li, Danning; Wu, Yue-Liang
2016-01-01
We investigate the chiral phase transition in the soft-wall model of AdS/QCD at zero chemical potential for two-flavor and three-flavor cases, respectively. We show that there is no spontaneous chiral symmetry breaking in the original soft-wall model. After detailed analysis, we find that in order to realize chiral symmetry breaking and restoration, both profiles for the scalar potential and the dilaton field are essential. The scalar potential determines the possible solution structure of the chiral condensate, except the mass term, it takes another quartic term for the two-flavor case, and for the three-flavor case, one has to take into account an extra cubic term due to the t’Hooft determinant interaction. The profile of the dilaton field reflects the gluodynamics, which is negative at a certain ultraviolet scale and approaches positive quadratic behavior at far infrared region. With this set-up, the spontaneous chiral symmetry breaking in the vacuum and its restoration at finite temperature can be realized perfectly. In the two-flavor case, it gives a second order chiral phase transition in the chiral limit, while the transition turns to be a crossover for any finite quark mass. In the case of three-flavor, the phase transition becomes a first order one in the chiral limit, while above sufficient large quark mass it turns to be a crossover again. This scenario agrees exactly with the current understanding on chiral phase transition from lattice QCD and other effective model studies.
Weak ωNN coupling in the non-linear chiral model
International Nuclear Information System (INIS)
Shmatikov, M.
1988-01-01
In the non-linear chiral model with the soliton solution stabilized by the ω-meson field the weak ωNN coupling constants are calculated. Applying the vector dominance model for the isoscalar current the constant of the isoscalar P-odd ωNN interaction h ω (0) =0 is obtained while the constant of the isovector (of the Lagrangian of the ωNN interaction proves to be h ω (1) ≅ 1.0x10 -7
Fermion: field nontopological solitons. II. Models for hadrons
International Nuclear Information System (INIS)
Friedberg, R.; Lee, T.D.
1977-01-01
The possibility, and its consequences, are examined that in a relativistic local field theory, consisting of color quarks q, scalar gluon sigma, color gauge field V/sub mu/ and color Higgs field phi, the mass of the soliton solution may be much lower than any mass of the plane wave solutions; i.e., m/sub q/ the quark mass, m/sub sigma/ the gluon mass, etc. There appears a rather clean separation between the physics of these low mass solitons and that of the high energy excitations, in the range of m/sub q/ and m/sub sigma/, provided that the parameters xi identical with (μ/m/sub q/) 2 and eta identical with μ/m/sub sigma/ are both much less than 1, where μ is an overall low energy scale appropriate for the solitons (but the ratio eta/xi is assumed to be O(1), though otherwise arbitrary). Under very general assumptions, it is shown that independently of the number of parameters in the original Lagrangian, the mathematical problem of finding the quasiclassical soliton solutions reduces, through scaling, to that of a simple set of two coupled first-order differential equations, neither of which contains any explicit free parameters. The general properties and the numerical solutions of this reduced set of differential equations are given. The resulting solitons exhibit physical characteristics very similar to those of a ''gas bubble'' immersed in a ''medium'': there is a constant surface tension and a constant pressure exerted by the medium on the gas; in addition, there are the ''thermodynamical'' energy of the gas and the related gas pressure, which are determined by the solutions of the reduced equations. Both a SLAC-like bag and the Creutz-Soh version of the MIT bag may appear, but only as special limiting cases. These soliton solutions are applied to the physical hadrons; their static properties are calculated and, within a 10 to 15 percent accuracy, agree with observations
Non-perturbative chiral corrections for lattice QCD
International Nuclear Information System (INIS)
Thomas, A.W.; Leinweber, D.B.; Lu, D.H.
2002-01-01
We explore the chiral aspects of extrapolation of observables calculated within lattice QCD, using the nucleon magnetic moments as an example. Our analysis shows that the biggest effects of chiral dynamics occur for quark masses corresponding to a pion mass below 600 MeV. In this limited range chiral perturbation theory is not rapidly convergent, but we can develop some understanding of the behaviour through chiral quark models. This model dependent analysis leads us to a simple Pade approximant which builds in both the limits m π → 0 and m π → ∞ correctly and permits a consistent, model independent extrapolation to the physical pion mass which should be extremely reliable. (author)
NJL-jet model for quark fragmentation functions
International Nuclear Information System (INIS)
Ito, T.; Bentz, W.; Cloeet, I. C.; Thomas, A. W.; Yazaki, K.
2009-01-01
A description of fragmentation functions which satisfy the momentum and isospin sum rules is presented in an effective quark theory. Concentrating on the pion fragmentation function, we first explain why the elementary (lowest order) fragmentation process q→qπ is completely inadequate to describe the empirical data, although the crossed process π→qq describes the quark distribution functions in the pion reasonably well. Taking into account cascadelike processes in a generalized jet-model approach, we then show that the momentum and isospin sum rules can be satisfied naturally, without the introduction of ad hoc parameters. We present results for the Nambu-Jona-Lasinio (NJL) model in the invariant mass regularization scheme and compare them with the empirical parametrizations. We argue that the NJL-jet model, developed herein, provides a useful framework with which to calculate the fragmentation functions in an effective chiral quark theory.
Nucleon electric polarizability in soliton models and the role of the seagull terms
International Nuclear Information System (INIS)
Scoccola, N.N.; Cohen, T.D.
1996-01-01
The full Hamiltonian of the soliton models contains no electric seagull terms. Here it is shown that if one restricts the fields to the collective subspace then electric seagull terms are induced in the effective Hamiltonian. These effective seagull contributions are consistent with gauge invariance. They also reproduce the leading non-analytic behavior of a large N c chiral perturbation theory calculation of the electric polarizability. (orig.)
Chiral symmetry in the strong color-electric field in terms of Nambu-Jona-Lasinio model
International Nuclear Information System (INIS)
Suganuma, Hideo
1990-01-01
We examine the behavior of chiral symmetry in an external gluon field using Nambu-Jona-Lasinio model, which is an effective theory of QCD. The Dyson equation for the dynamical quark mass in the presence of the external color-electric field is obtained. By solving it in the color flux tube inside mesons, chiral symmetry would be restored in the flux tube of mesons and this result supports Chiral Bag picture for mesons. Next we consider the flux tubes formed in the central region for ultra-relativistic heavy-ion collisions, and find the chiral restoration occurs there, so that the current quark mass seems to be suitable in calculating the q-q-bar pair creation rate by the Schwinger formula in the flux-tube picture. (author)
Sohn, Hayley; Ackerman, Paul; Smalyukh, Ivan
Three-dimensional (3D) topological solitons arise in field theories ranging from particle physics to condensed matter and cosmology. They are the 3D counterparts of 2D skyrmions (often called ``baby skyrmions''), which attract a great deal of interest in studies of chiral ferromagnets and enable the emerging field of skyrmionics. In chiral nematic liquid crystals, the stability of such solitons is enhanced by the chiral medium's tendency to twist the director field describing the 3D spatial patterns of molecular alignment. However, their experimental realization, control and detailed studies remain limited. We combine experimental realization and numerical modeling of such light-responsive solitonic structures, including elementary torons and hopfions, in confined chiral nematic liquid crystals with photo-tunable cholesteric pitch. We show that the optical tunability of the pitch allows for using low-intensity light to control the soliton stability, dimensions, spatial patterning and dynamics.
The Chiral bag model and the little bag
International Nuclear Information System (INIS)
Vento, Vincent.
1980-11-01
We review the properties of the existing solutions to the Chiral bag equations of motion and discuss how the 'little bag' picture could come about in this scheme. Our analysis leads to a model which is qualitatively similar to the naive quark model with pion cloud corrections. We use this latter approach to look for pion cloud signatures in experimental data
Chiral gravitational waves and baryon superfluid dark matter
Alexander, Stephon; McDonough, Evan; Spergel, David N.
2018-05-01
We develop a unified model of darkgenesis and baryogenesis involving strongly interacting dark quarks, utilizing the gravitational anomaly of chiral gauge theories. In these models, both the visible and dark baryon asymmetries are generated by the gravitational anomaly induced by the presence of chiral primordial gravitational waves. We provide a concrete model of an SU(2) gauge theory with two massless quarks. In this model, the dark quarks condense and form a dark baryon charge superfluid (DBS), in which the Higgs-mode acts as cold dark matter. We elucidate the essential features of this dark matter scenario and discuss its phenomenological prospects.
International Nuclear Information System (INIS)
Kashiwa, Kouji; Matsuzaki, Masayuki; Kouno, Hiroaki; Yahiro, Masanobu
2007-01-01
We study the interplay of the chiral and the color superconducting phase transition in an extended Nambu-Jona-Lasinio model with a multi-quark interaction that produces the nonlinear chiral-diquark coupling. We observe that this nonlinear coupling adds up coherently with the ω 2 interaction to either produce the chiral-color superconductivity coexistence phase or cancel each other depending on its sign. We discuss that a large coexistence region in the phase diagram is consistent with the quark-diquark picture for the nucleon whereas its smallness is the prerequisite for the applicability of the Ginzburg-Landau approach
A three-flavor chiral effective model with four baryonic multiplets within the mirror assignment
Energy Technology Data Exchange (ETDEWEB)
Olbrich, Lisa; Zetenyi, Miklos; Giacosa, Francesco; Rischke, Dirk H. [Institute for Theoretical Physics, Goethe University Frankfurt am Main (Germany)
2016-07-01
Chiral symmetry requires the existence of chiral partners in the hadronic mass spectrum. In this talk, we address the question which is the chiral partner of the nucleon. We employ a chirally symmetric linear sigma model, where hadrons and their chiral partners are treated on the same footing. We construct four spin-1/2 baryon multiplets from left- and right-handed quarks as well as left- and right-handed diquarks. Two of these multiplets transform in a ''mirror'' way, which allows for chirally invariant mass terms. We then embed these baryonic multiplets into the Lagrangian of the extended Linear Sigma Model, which features (pseudo)scalar and (axial-)vector mesons, as well as glueballs. Reducing the Lagrangian to the two-flavor case, we obtain four doublets of nucleonic states. These mix to produce the positive-parity nucleon N(939) and the Roper resonance N(1440), as well as the negative-parity resonances N(1535) and N(1650). We determine the parameters of the nucleonic part of the Lagrangian from a fit to masses and decay properties of these states. Studying the limit of vanishing quark condensate, we conclude that N(939) and N(1535), as well as N(1440) and N(1650) form pairs of chiral partners.
On the vacuum baryon number in the chiral bag model
International Nuclear Information System (INIS)
Jaroszewicz, T.
1984-01-01
We give a rederivation, generalization and interpretation of the result of Goldstone and Jaffe on the vacuum baryon number in the chiral bag model. Our results are based on considering the bag model as a theory of free quarks, massless inside and infinitely massive outside the bag. (orig.)
QCD-motivated Nambu-Jona-Lasinio model with quark and gluon condensates
International Nuclear Information System (INIS)
Ebert, D.; Volkov, M.K.
1991-01-01
We present a systematic study of the role of the nonperturbative gluon condensate arising in a QCD-motivated NJL model. The effects of the gluon condensate on induced meson couplings, the pion decay constant, quark condensate and mass formulae are investigated. An interesting result is the change of the scale Λ of chiral symmetry breaking and of the universal four-quark coupling κ. (orig.)
A chiral quark model for meson electroproduction in the S11 partial wave
International Nuclear Information System (INIS)
Golli, B.; Sirca, S.
2011-01-01
We calculate the meson scattering and electroproduction amplitudes in the S11 partial wave in a coupled-channel approach that incorporates quasi-bound quark-model states. Using the quark wave functions and the quark-meson interaction from the Cloudy Bag Model, we obtain a good overall agreement with the available experimental results for the partial widths of the N(1535) and the N(1650) resonances as well as for the pion, eta and kaon electroproduction amplitudes. Our model is consistent with the N(1535) resonance being dominantly a genuine three-quark state rather than a quasi-bound state of mesons and baryons. (orig.)
Investigations in gauge theories, topological solitons and string theories
International Nuclear Information System (INIS)
1993-01-01
This is the Final Report on a supported research project on theoretical particle physics entitled ''Investigations in Gauge Theories, Topological Solitons and String Theories.'' The major theme of particle theory pursued has been within the rubric of the standard model, particularly on the interplay between symmetries and dynamics. Thus, the research has been carried out primarily in the context of gauge with or without chiral fermions and in effective chiral lagrangian field theories. The topics studied include the physical implications of abelian and non-abelian anomalies on the spectrum and possible dynamical symmetry breaking in a wide range of theories. A wide range of techniques of group theory, differential geometry and function theory have been applied to probe topological and conformal properties of quantum field theories in two and higher dimensions, the breaking of global chiral symmetries by vector-like gauge theories such as QCD,the phenomenology of a possibly strongly interacting Higgs sector within the minimal standard model, and the relevance of solitonic ideas to non-perturbative phenomena at SSC energies
International Nuclear Information System (INIS)
Rajasekaran, G.
1978-01-01
Recent developments in the theory of solitons and related objects in the fields of high energy physics and nuclear physics are reviewed. The aim is to concentrate on the physical aspects and explain why these objects have awakened the interest of physicists. The physics of solitons is discussed with the help of a simple one-dimensional soliton. Then the physically more interesting monopole-soliton is considered and its connection with the original Dirac monopole is pointed out. The ''revolutionary'' possibility of making fermions as composites of bosons is indicated. Both the one-dimensional solitons and the monopole-soliton are examples of ''topological solitons'' and the role of topology in the physics of solitons is explained. The possible importance of topological quantum numbers in providing a fundamental understanding of the basic conservation laws of physics is pointed out. Two examples of non-topological solitons namely, the nucleon as a bag of almost-massless quarks and the abnormal nucleons as a bag of almost massless nucleons is discussed. (auth.)
Thermo-magnetic effects in quark matter: Nambu-Jona-Lasinio model constrained by lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Farias, Ricardo L.S. [Universidade Federal de Santa Maria, Departamento de Fisica, Santa Maria, RS (Brazil); Kent State University, Physics Department, Kent, OH (United States); Timoteo, Varese S. [Universidade Estadual de Campinas (UNICAMP), Grupo de Optica e Modelagem Numerica (GOMNI), Faculdade de Tecnologia, Limeira, SP (Brazil); Avancini, Sidney S.; Pinto, Marcus B. [Universidade Federal de Santa Catarina, Departamento de Fisica, Florianopolis, Santa Catarina (Brazil); Krein, Gastao [Universidade Estadual Paulista, Instituto de Fisica Teorica, Sao Paulo, SP (Brazil)
2017-05-15
The phenomenon of inverse magnetic catalysis of chiral symmetry in QCD predicted by lattice simulations can be reproduced within the Nambu-Jona-Lasinio model if the coupling G of the model decreases with the strength B of the magnetic field and temperature T. The thermo-magnetic dependence of G(B, T) is obtained by fitting recent lattice QCD predictions for the chiral transition order parameter. Different thermodynamic quantities of magnetized quark matter evaluated with G(B, T) are compared with the ones obtained at constant coupling, G. The model with G(B, T) predicts a more dramatic chiral transition as the field intensity increases. In addition, the pressure and magnetization always increase with B for a given temperature. Being parametrized by four magnetic-field-dependent coefficients and having a rather simple exponential thermal dependence our accurate ansatz for the coupling constant can be easily implemented to improve typical model applications to magnetized quark matter. (orig.)
Radiative decays of vector mesons in the chiral bag model
International Nuclear Information System (INIS)
Tabachenko, A.N.
1988-01-01
A new model of radiative π-meson decays of vector mesons in the chiral bag model is proposed. The quark-π-meson interaction has the form of a pseudoscalar coupling and is located on the bag surface. The vector meson decay width depends on the quark masses, the π-meson decay constant, the radius of the bag, and the free parameter Z 2 , which specifies the disappearance of the bag during the decay. The obtained results for the omega- and p-decay widths are in satisfactory agreement with the experiment
Effects of Composite Pions on the Chiral Condensate within the PNJL Model at Finite Temperature
Blaschke, D.; Dubinin, A.; Ebert, D.; Friesen, A. V.
2018-05-01
We investigate the effect of composite pions on the behaviour of the chiral condensate at finite temperature within the Polyakov-loop improved NJL model. To this end we treat quark-antiquark correlations in the pion channel (bound states and scattering continuum) within a Beth-Uhlenbeck approach that uses medium-dependent phase shifts. A striking medium effect is the Mott transition which occurs when the binding energy vanishes and the discrete pion bound state merges the continuum. This transition is triggered by the lowering of the continuum edge due to the chiral restoration transition. This in turn also entails a modification of the Polyakov-loop so that the SU(3) center symmetry gets broken at finite temperature and dynamical quarks (and gluons) appear in the system, taking over the role of the dominant degrees of freedom from the pions. At low temperatures our model reproduces the chiral perturbation theory result for the chiral condensate while at high temperatures the PNJL model result is recovered. The new aspect of the current work is a consistent treatment of the chiral restoration transition region within the Beth-Uhlenbeck approach on the basis of mesonic phase shifts for the treatment of the correlations.
QCD-motivated Nambu-Jona-Lasinio model with quark and gluon condensates
International Nuclear Information System (INIS)
Ebert, D.; Volkov, M.K.
1991-01-01
A systematic study of the role of the nonperturbative gluon condensate arising in a QCD-motivated Nambu-Jona-Lasinio model is presented. The effects of the gluon condensate on induced meson couplings, the pion decay constant, quark condensate and mass formulae are investigated. An interesting result is the change of the scale Λ of chiral symmetry breaking and of the universal four-quark coupling constant κ. 20 refs
The chiral condensate from lattice QCD with Wilson twisted mass quarks
Energy Technology Data Exchange (ETDEWEB)
Urbach, Carsten [Bonn Univ. (Germany). HISKP (Theorie)
2016-11-01
Lattice QCD is a very computer time demanding scientific application. Only with the computer time made available on supercomputers like SuperMUC significant progress, like the one reported here, can be reached. Moreover, the computing resources made available by LRZ are used to reduce the systematic uncertainties in our results even further: in another project we are generating ensembles with physical values of the quark masses, such that a chiral extrapolation is not needed anymore.
Masses of the light hadrons in the chiral and cloudy bag models
International Nuclear Information System (INIS)
Saito, Koichi.
1983-10-01
The masses of the light hadrons except for the pion are calculated in the stable chiral and cloudy bag models with the massless or massive u, d quark and pion. Two difficulties in these models, i.e. the lack of stability and the divergence of the quark self-energy, are removed by taking account of a simple non-local quark-pion interaction. The effects of the finite size of the qq-bar pion and the behavior of the quark self-energy are discussed in detail. In our calculation the bag self-energy due to the pion has an important role in the origin of the N-Δ and the Σ-Λ mass differences. The baryon octet and decuplet masses are well reproduced by the present model. (author)
Multi baryons with flavors in the Skyrme model
Energy Technology Data Exchange (ETDEWEB)
Schat, Carlos L. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Scoccola, Norberto N. [Comision Nacional de Energia Atomica, Buenos Aires (Argentina). Dept. of Physics
1999-07-01
We investigate the possible existence of multi baryons with heavy flavor quantum numbers using the bound state approach to the topological soliton model and the recently proposed approximation for multi skyrmion fields based on rational maps. We use an effective interaction Lagrangian which consistently incorporates both chiral symmetry and the heavy quark symmetry including the corrections up to order {omicron}(1/m{sub Q}). The model predicts some narrow heavy flavored multi baryon states with baryon number four and seven. (author)
Multi baryons with flavors in the Skyrme model
International Nuclear Information System (INIS)
Schat, Carlos L.; Scoccola, Norberto N.
1999-07-01
We investigate the possible existence of multi baryons with heavy flavor quantum numbers using the bound state approach to the topological soliton model and the recently proposed approximation for multi skyrmion fields based on rational maps. We use an effective interaction Lagrangian which consistently incorporates both chiral symmetry and the heavy quark symmetry including the corrections up to order ο(1/m Q ). The model predicts some narrow heavy flavored multi baryon states with baryon number four and seven. (author)
Two-Quark Condensate Changes with Quark Current Mass
International Nuclear Information System (INIS)
Lu Changfang; Lue Xiaofu; Wu Xiaohua; Zhan Yongxin
2009-01-01
Using the Schwinger-Dyson equation and perturbation theory, we calculate the two-quark condensates for the light quarks u, d, strange quark s and a heavy quark c with their current masses respectively. The results show that the two-quark condensate will decrease when the quark mass increases, which hints the chiral symmetry may be restored for the heavy quarks.
Quark condensates in nuclear matter in the global color symmetry model of QCD
International Nuclear Information System (INIS)
Liu Yuxin; Gao Dongfeng; Guo Hua
2003-01-01
With the global color symmetry model being extended to finite chemical potential, we study the density dependence of the local and nonlocal scalar quark condensates in nuclear matter. The calculated results indicate that the quark condensates increase smoothly with the increasing of nuclear matter density before the critical value (about 12ρ 0 ) is reached. It also manifests that the chiral symmetry is restored suddenly as the density of nuclear matter reaches its critical value. Meanwhile, the nonlocal quark condensate in nuclear matter changes nonmonotonously against the space-time distance among the quarks
A diquark model for baryons containing one heavy quark
International Nuclear Information System (INIS)
Ebert, D.; Feldmann, T.; Kettner, C.; Reinhardt, H.
1995-06-01
We present a phenomenological ansatz for coupling a heavy quark with two light quarks to form a heavy baryon. The heavy quark is treated in the heavy mass limit, and the light quark dynamics is approximated by propagating scalar and axial vector 'diquarks'. The resulting effective lagrangian, which incorporates heavy quark and chiral symmetry, describes interactions of heavy baryons with Goldstone bosons in the low energy region. As an application, the Isgur-Wise formfactors are estimated. (orig.)
Broken chiral symmetry and the structure of hadrons
International Nuclear Information System (INIS)
Spence, W.L.
1982-01-01
The spontaneous breaking of chiral symmetry plays a decisive role in the structure of hadrons composed of light quarks. The formalism by which the dynamics of chiral symmetry breaking and its implications for hadronic structure can be explored in a simplified world in which fully relativistic zero-bare-mass quarks interact through a chirally symmetric instantaneous confining potential is presented. By thus modeling the essentials of the chiral limit-N/sub c/ infinity limit of QCD contact is made with the successes of existent semiphenomenological models of hadrons but post assumptions which explicitly violate chiral symetry are avoided. This revised approach then makes possible a unification of the dynamics of hadron structure with the mechanism of spontaneous chiral breaking and guarantees the appearance of the correct Goldstone excitations. The chiral breaking order parameter (absolute value anti psi psi), effective quark mass, and Goldstone boson wave function are obtainable by solving a single non-linear integral equation once a potential has been prescribed. The stability of the chiral asymmetric vacuum must then be established by studying the linear eigenvalue problem which determines the spectrum of states with vacuum quantum numbers. The nature of the instability of the chiral symmetric vacuum that leads to spontaneous symmetry breaking is explained and its apparent contingency on details of the dynamics is emphasized. It is argued that a single massless fermion in a chirally symmetric potential does form bound states for which a semi-classical description is given. Coupling to vacuum pairs of such bound states occasions the possibility of chiral symmetry breakdown
International Nuclear Information System (INIS)
Bogolyubov, N.P.
1988-01-01
A model of the spontaneous breaking of chiral symmetry motivated by quantum chromodynamics is considered at a finite density of the quarks and zero temperature. For zero chemical potential the dynamical quark mass, the bag constant, and the vacuum expectation value are estimated. The dependence of the grand thermodynamic potential on the chemical potential of the quarks and of the energy on the particle number density are calculated. It is found that there is a phase transition of the first kind with respect to the density of the quarks accompanied by restoration of the chiral symmetry. The critical values of the fermion density are found
Quark and pion effective couplings from polarization effects
Energy Technology Data Exchange (ETDEWEB)
Braghin, Fabio L. [Federal University of Goias, Instituto de Fisica, Goiania, GO (Brazil)
2016-05-15
A flavor SU(2) effective model for pions and quarks is derived by considering polarization effects departing from the usual quark-quark effective interaction induced by dressed gluon exchange, i.e. a global color model for QCD. For that, the quark field is decomposed into a component that yields light mesons and the quark-antiquark condensate, being integrated out by means of the auxiliary field method, and another component which yields constituent quarks, which is basically a background quark field. Within a long-wavelength and weak quark field expansion (or large quark effective mass expansion) of a quark determinant, the leading terms are found up to the second order in a zero-order derivative expansion, by neglecting vector mesons that are considerably heavier than the pion. Pions are considered in the structureless limit and, besides the chiral invariant terms that reproduce previously derived expressions, symmetry breaking terms are also presented. The leading chiral quark-quark effective couplings are also found corresponding to a NJL and a vector-NJL couplings. All the resulting effective coupling constants and parameters are expressed in terms of the current and constituent quark masses and of the coupling g. (orig.)
Structure functions in the chiral bag model
International Nuclear Information System (INIS)
Sanjose, V.; Vento, V.; Centro Mixto CSIC/Valencia Univ., Valencia
1989-01-01
We calculate the structure functions of an isoscalar nuclear target for the deep inelastic scattering by leptons in an extended version of the chiral bag model which incorporates the qanti q structure of the pions in the cloud. Bjorken scaling and Regge behavior are satisfied. The model calculation reproduces the low-x behavior of the data but fails to explain the medium- to large-x behavior. Evolution of the quark structure functions seem inevitable to attempt a connection between the low-energy models and the high-energy behavior of quantum chromodynamics. (orig.)
Structure functions in the chiral bag model
Energy Technology Data Exchange (ETDEWEB)
Sanjose, V.; Vento, V.
1989-07-13
We calculate the structure functions of an isoscalar nuclear target for the deep inelastic scattering by leptons in an extended version of the chiral bag model which incorporates the qanti q structure of the pions in the cloud. Bjorken scaling and Regge behavior are satisfied. The model calculation reproduces the low-x behavior of the data but fails to explain the medium- to large-x behavior. Evolution of the quark structure functions seem inevitable to attempt a connection between the low-energy models and the high-energy behavior of quantum chromodynamics. (orig.).
Minkowski space pion model inspired by lattice QCD running quark mass
Energy Technology Data Exchange (ETDEWEB)
Mello, Clayton S. [Instituto Tecnológico de Aeronáutica, DCTA, 12.228-900 São José dos Campos, SP (Brazil); Melo, J.P.B.C. de [Laboratório de Física Teórica e Computacional – LFTC, Universidade Cruzeiro do Sul, 01506-000 São Paulo, SP (Brazil); Frederico, T., E-mail: tobias@ita.br [Instituto Tecnológico de Aeronáutica, DCTA, 12.228-900 São José dos Campos, SP (Brazil)
2017-03-10
The pion structure in Minkowski space is described in terms of an analytic model of the Bethe–Salpeter amplitude combined with Euclidean Lattice QCD results. The model is physically motivated to take into account the running quark mass, which is fitted to Lattice QCD data. The pion pseudoscalar vertex is associated to the quark mass function, as dictated by dynamical chiral symmetry breaking requirements in the limit of vanishing current quark mass. The quark propagator is analyzed in terms of a spectral representation, and it shows a violation of the positivity constraints. The integral representation of the pion Bethe–Salpeter amplitude is also built. The pion space-like electromagnetic form factor is calculated with a quark electromagnetic current, which satisfies the Ward–Takahashi identity to ensure current conservation. The results for the form factor and weak decay constant are found to be consistent with the experimental data.
Minkowski space pion model inspired by lattice QCD running quark mass
Directory of Open Access Journals (Sweden)
Clayton S. Mello
2017-03-01
Full Text Available The pion structure in Minkowski space is described in terms of an analytic model of the Bethe–Salpeter amplitude combined with Euclidean Lattice QCD results. The model is physically motivated to take into account the running quark mass, which is fitted to Lattice QCD data. The pion pseudoscalar vertex is associated to the quark mass function, as dictated by dynamical chiral symmetry breaking requirements in the limit of vanishing current quark mass. The quark propagator is analyzed in terms of a spectral representation, and it shows a violation of the positivity constraints. The integral representation of the pion Bethe–Salpeter amplitude is also built. The pion space-like electromagnetic form factor is calculated with a quark electromagnetic current, which satisfies the Ward–Takahashi identity to ensure current conservation. The results for the form factor and weak decay constant are found to be consistent with the experimental data.
International Nuclear Information System (INIS)
Lebrun, J.-P.M.
1988-01-01
The modification of electrodynamics for the g'-quark permitting chiral invariance, CA, and PCAC to hold effords to relate the nucleon electromagnetic mass splitting to the pionic case previously treated by Ward's identities. This gives correct sign and order of magnitude for his effect and finite positive proton charge
International Nuclear Information System (INIS)
Barik, N.; Dash, B.K.
1986-01-01
Under the assumption that baryons are an assembly of independent quarks, confined in a first approximation by an effective potential U(r) = 1/2(1+γ 0 )(ar 2 +V 0 ) which presumably represents the nonperturbative gluon interactions, the mass spectrum of the low-lying ground-state baryons has been calculated by considering perturbatively the contributions of the residual quark-pion coupling arising out of the requirement of chiral symmetry and that of the quark-gluon coupling due to one-gluon exchange over and above the necessary center-of-mass correction. The physical masses of the baryons so obtained agree quite well with the corresponding experimental value. The strong coupling constant α/sub c/ = 0.58 required here to describe the QCD mass splittings is quite consistent with the idea of treating one-gluon-exchange effects in lowest-order perturbation theory
Hopf solitons in the AFZ model
International Nuclear Information System (INIS)
Gillard, Mike
2011-01-01
The Aratyn–Ferreira–Zimerman (AFZ) model is a conformal field theory in three-dimensional space. It has solutions that are topological solitons classified by an integer-valued Hopf index. There exist infinitely many axial solutions which have been found analytically. Static axial, knot and linked solitons are found numerically using a modified volume preserving flow for Hopf index one to eight, allowing for comparison with other Hopf soliton models. Solutions include a static trefoil knot at Hopf index five. A one-parameter family of conformal Skyrme–Faddeev models, consisting of linear combinations of the Nicole and AFZ models, are also investigated numerically. The transition of solutions for Hopf index four is mapped across these models. A topological change between linked and axial solutions occurs, with fewer models (or a limited range of parameter values) permitting axial solitons than linked solitons at Hopf index four
Ackerman, Paul J.; Smalyukh, Ivan I.
2017-01-01
Topological solitons are knots in continuous physical fields classified by nonzero Hopf index values. Despite arising in theories that span many branches of physics, from elementary particles to condensed matter and cosmology, they remain experimentally elusive and poorly understood. We introduce a method of experimental and numerical analysis of such localized structures in liquid crystals that, similar to the mathematical Hopf maps, relates all points of the medium's order parameter space to their closed-loop preimages within the three-dimensional solitons. We uncover a surprisingly large diversity of naturally occurring and laser-generated topologically nontrivial solitons with differently knotted nematic fields, which previously have not been realized in theories and experiments alike. We discuss the implications of the liquid crystal's nonpolar nature on the knot soliton topology and how the medium's chirality, confinement, and elastic anisotropy help to overcome the constraints of the Hobart-Derrick theorem, yielding static three-dimensional solitons without or with additional defects. Our findings will establish chiral nematics as a model system for experimental exploration of topological solitons and may impinge on understanding of such nonsingular field configurations in other branches of physics, as well as may lead to technological applications.
Unlocking color and flavor in superconducting strange quark matter
International Nuclear Information System (INIS)
Alford, Mark; Berges, Juergen; Rajagopal, Krishna
1999-01-01
We explore the phase diagram of strongly interacting matter with massless u and d quarks as a function of the strange quark mass m s and the chemical potential μ for baryon number. Neglecting electromagnetism, we describe the different baryonic and quark matter phases at zero temperature. For quark matter, we support our model-independent arguments with a quantitative analysis of a model which uses a four-fermion interaction abstracted from single-gluon exchange. For any finite m s , at sufficiently large μ we find quark matter in a color-flavor-locked state which leaves a global vector-like SU(2) color+L+R symmetry unbroken. As a consequence, chiral symmetry is always broken in sufficiently dense quark matter. As the density is reduced, for sufficiently large m s we observe a first-order transition from the color-flavor-locked phase to color superconducting phase analogous to that in two-flavor QCD. At this unlocking transition chiral symmetry is restored. For realistic values of m s our analysis indicates that chiral symmetry breaking may be present for all densities down to those characteristic of baryonic matter. This supports the idea that quark matter and baryonic matter may be continuously connected in nature. We map the gaps at the quark Fermi surfaces in the high density color-flavor-locked phase onto gaps at the baryon Fermi surfaces at low densities
Higgs-Yukawa model in chirally-invariant lattice field theory
Bulava, John; Jansen, Karl; Kallarackal, Jim; Knippschild, Bastian; Lin, C.-J.David; Nagai, Kei-Ichi; Nagy, Attila; Ogawa, Kenji
2013-01-01
Non-perturbative numerical lattice studies of the Higgs-Yukawa sector of the standard model with exact chiral symmetry are reviewed. In particular, we discuss bounds on the Higgs boson mass at the standard model top quark mass, and in the presence of heavy fermions. We present a comprehensive study of the phase structure of the theory at weak and very strong values of the Yukawa coupling as well as at non-zero temperature.
Higgs-Yukawa model in chirally-invariant lattice field theory
Energy Technology Data Exchange (ETDEWEB)
Bulava, John [CERN, Geneva (Switzerland). Physics Department; Gerhold, Philipp; Kallarackal, Jim; Nagy, Attila [Humboldt Univ. Berlin (Germany). Inst. fuer Physik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Knippschild, Bastian [National Taiwan Univ., Taipei (China). Dept. of Physics; Lin, C.J. David [National Chiao-Tung Univ., Hsinchu (China). Inst. of Physics; National Centre for Theoretical Sciences, Hsinchu (China). Div. of Physics; Nagai, Kei-Ichi [Nagoya Univ., Nagoya, Aichi (Japan). Kobayashi-Maskawa Institute; Ogawa, Kenji [Chung-Yuan Christian Univ., Chung-Li (China). Dept. of Physics
2012-10-15
Non-perturbative numerical lattice studies of the Higgs-Yukawa sector of the standard model with exact chiral symmetry are reviewed. In particular, we discuss bounds on the Higgs boson mass at the standard model top quark mass, and in the presence of heavy fermions. We present a comprehensive study of the phase structure of the theory at weak and very strong values of the Yukawa coupling as well as at non-zero temperature.
Pion-nucleon scattering in the Chiral bag model
International Nuclear Information System (INIS)
Israilov, Z.Z.; Musakhanov, M.M.
1981-01-01
The effective hamiltonian of the πNΔ-system in the framework of the Chiral Bag Model (CBM) contains πNN-, πNΔ-, πΔΔ-interaction terms with a form factor which is esstentially dependent on the size and shape of the quark bag. The interation of the Born graphs of this model provides successful description of the (3,3) and (3,1) phase shifts [in the (3,3) resonance region] where the values of the paramters agree with the CBM. (orig.)
Solitons in four dimensional gravity
International Nuclear Information System (INIS)
Matos, T.
1990-01-01
An alternative method to solve the Chiral equations with SL (2,R) symmetry is developed. One gets the N-soliton solution using the Neugebauer Ansatz. For N = 1 one obtains the Backlund transformation of the Chiral equations. From the application of this transformation for the flat seed solution one finds the Kerr-NUT solution. This method can be applied to generate solutions of the n-dimensional Einstein equations (Author)
Molkenthin, Nora; Hu, Shuangwei; Niemi, Antti J.
2011-02-01
We introduce a novel generalization of the discrete nonlinear Schrödinger equation. It supports solitons that we utilize to model chiral polymers in the collapsed phase and, in particular, proteins in their native state. As an example we consider the villin headpiece HP35, an archetypal protein for testing both experimental and theoretical approaches to protein folding. We use its backbone as a template to explicitly construct a two-soliton configuration. Each of the two solitons describe well over 7.000 supersecondary structures of folded proteins in the Protein Data Bank with sub-angstrom accuracy suggesting that these solitons are common in nature.
The nucleon-nucleon potential in the chromodielectric soliton model
International Nuclear Information System (INIS)
Koepf, W.; Wilets, L.; Pepin, S.; Stancu, F.
1993-01-01
The short- and medium-range parts of the nucleon-nucleon interaction are being studied in the framework of the chromodielectric soliton model. The model consists of current quarks, gluons in the abelian approximation, and a scalar σ field which simulates the nonabelian interactions of the gluons and governs the medium through the dielectric function κ(σ). Absolute color confinement is effected by the vanishing of the dielectric in vacuum; this also removes the troublesome van der Waals problem. The authors distinguish between spatial confinement, which arises from the self energy of the quarks in medium (excluding MFA contributions), and color confinement which is effected through OGE in the MFA (including the corresponding self energy contributions). The static (adiabatic) energies are computed as a function of deformation (generalized bag separation) in a constrained MFA. Six quark molecular-type wave functions in all important space-spin-isospin-color configurations are included. The gluon propagator is solved in the deformed dielectric medium. The resultant Hamiltonian matrix is diagonalized. Dynamics are handled in the Generator Coordinate Method, which leads to the Hill-Wheeler integral equation. In the present case, this yields a set of coupled equations corresponding to the various configurations. Although this can be approximated by a set of differential equations, they propose to solve the integral equations with some regularization scheme
Repetition of the quark-lepton states in a supersymmetric composite model with complementarity
International Nuclear Information System (INIS)
Yamada, Hirofumi; Yasue, Masaki.
1986-04-01
In a supersymmetric composite model based on an SU(4) sc loc confining theory, complementarity is used to support the symmetry-breaking pattern and spectrum of massless particles in a confining phase. The model is found to accommodate two generations of quarks and leptons as quasi Nambu-Goldstone fermions and another two generations as chiral fermions. Masses of composite particles are examined and the quark-lepton generations are classified according to possible mass splittings. The suppression of dangerous flavor-changing interactions is also considered. (author)
Chiral model predictions for electromagnetic polarizabilities of the nucleon: A 'consumer report'
International Nuclear Information System (INIS)
Broniowski, W.
1992-01-01
This contribution has two parts: (1) The author critically discusses predictions for the electromagnetic polarizabilities of the nucleon obtained in two different approaches: (a) hedgehog models (HM), such as Skyrmions, chiral quark models, hybrid bags, NJL etc., and (b) chiral perturbation theory (χPT). (2) The author shows new results obtained in HM: N c -counting of polarizabilities, splitting of the neutron and proton polarizabilities (he argues that α n > α p in models with pionic clouds), relevance of dispersive terms in the magnetic polarizability β, important role of the Δ resonance in pionic loops, and the effects of non-minimal substitution terms in the effective lagrangian. 3 refs
International Nuclear Information System (INIS)
Ecker, G.
1996-06-01
After a general introduction to the structure of effective field theories, the main ingredients of chiral perturbation theory are reviewed. Applications include the light quark mass ratios and pion-pion scattering to two-loop accuracy. In the pion-nucleon system, the linear σ model is contrasted with chiral perturbation theory. The heavy-nucleon expansion is used to construct the effective pion-nucleon Lagrangian to third order in the low-energy expansion, with applications to nucleon Compton scattering. (author)
Quark-antiquark condensates in the hadronic phase
International Nuclear Information System (INIS)
Tawfik, A.; Toublan, D.
2005-01-01
We use a hadron resonance gas model to calculate the quark-antiquark condensates for light (up and down) and strange quark flavors at finite temperatures and chemical potentials. At zero chemical potentials, we find that at the temperature where the light quark-antiquark condensates entirely vanish the strange quark-antiquark condensate still keeps a relatively large fraction of its value in the vacuum. This is in agreement with results obtained in lattice simulations and in chiral perturbation theory at finite temperature and zero chemical potentials. Furthermore, we find that this effect slowly disappears at larger baryon chemical potential. These results might have significant consequences for our understanding of QCD at finite temperatures and chemical potentials. Concretely, our results imply that there might be a domain of temperatures where chiral symmetry is restored for light quarks, but still broken for strange quark that persists at small chemical potentials. This might have practical consequences for heavy ion collision experiments
From quarks to pions chiral symmetry and confinement
Creutz, Michael
2018-01-01
At a fundamental level, the interaction of quarks with gluon fields lies at the heart of our understanding of the strong nuclear force. Experimentally, however, we only observe physical hadrons such as protons and pions. This book explores the fascinating physics involved in the path between these contrasting pictures of the world. Along the way, the book discusses symmetries, which play a crucial role in understanding the parameters of the theory, and details of the spectrum of physical particles. This would be the first book to elaborate on the detailed connections between confinement and chiral symmetry, with an emphasis on a unified treatment of the non-perturbative nature of these phenomena. As such, it should be a valuable title on any particle theorist's bookshelf, containing extensive pedagogical material for scientists at the graduate level and above.
Directory of Open Access Journals (Sweden)
Paul J. Ackerman
2017-01-01
Full Text Available Topological solitons are knots in continuous physical fields classified by nonzero Hopf index values. Despite arising in theories that span many branches of physics, from elementary particles to condensed matter and cosmology, they remain experimentally elusive and poorly understood. We introduce a method of experimental and numerical analysis of such localized structures in liquid crystals that, similar to the mathematical Hopf maps, relates all points of the medium’s order parameter space to their closed-loop preimages within the three-dimensional solitons. We uncover a surprisingly large diversity of naturally occurring and laser-generated topologically nontrivial solitons with differently knotted nematic fields, which previously have not been realized in theories and experiments alike. We discuss the implications of the liquid crystal’s nonpolar nature on the knot soliton topology and how the medium’s chirality, confinement, and elastic anisotropy help to overcome the constraints of the Hobart-Derrick theorem, yielding static three-dimensional solitons without or with additional defects. Our findings will establish chiral nematics as a model system for experimental exploration of topological solitons and may impinge on understanding of such nonsingular field configurations in other branches of physics, as well as may lead to technological applications.
Vector meson decays in the chiral bag model
International Nuclear Information System (INIS)
Maxwell, O.V.; Jennings, B.K.
1985-01-01
Vector meson decays are examined in a model where a confined quark and antiquark annihilate, producing a pair of elementary pseudoscalar mesons. Two versions of the pseudoscalar meson-quark interaction are employed, one where the coupling is restricted to the bag surface and one where it extends throughout the bag volume. Energy conservation is ensured in the model through insertion of exponential factors containing the bag energy at each interaction vertex. To guarantee momentum conservation, a wave-packet description is utilized in which the decay widths are normalized by a factor involving the overlap of the initial bag state with the confined qanti q state of zero momentum. With either interaction, the model yields a value for the p-width that exceeds the empirical width by a factor two. For the Ksup(*) and PHI mesons, the computed widths depend strongly on the interaction employed. Implications of these results for chiral bag models are discussed. (orig.)
Chiral dynamics with (nonstrange quarks
Directory of Open Access Journals (Sweden)
Kubis Bastian
2017-01-01
Full Text Available We review the results and achievements of the project B.3. Topics addressed include pion photoproduction off the proton and off deuterium, three-flavor chiral perturbation theory studies, chiral symmetry tests in Goldstone boson decays, the development of unitarized chiral perturbation theory to next-to-leading order, the two-pole structure of the Λ(1405, the dynamical generation of the lowest S11 resonances, the theory of hadronic atoms and its application to various systems, precision studies in light-meson decays based on dispersion theory, the Roy–Steiner analysis of pion–nucleon scattering, a high-precision extraction of the elusive pion–nucleon σ-term, and aspects of chiral dynamics in few-nucleon systems.
Nuclear phenomena derived from quark-gluon strings
DEFF Research Database (Denmark)
Bohr, Henrik; Providencia, Constanca; Providencia, Joao da
2005-01-01
provided that the chiral fields are identified with the two-particle strings, which are natural in a QCD framework. Moreover, the model is able to reconcile qualitatively such aspects of hadronic physics as saturation density and binding energy of nuclear matter, surface density of finite nuclei, mass......, for the occurrence of the phases of nuclear matter. The model exhibits a quark deconfinement transition and chiral restoration, which are ingredients of QCD and give qualitatively correct numerics. The effective model is shown to be isomorphic to the Nambu-Jona-Lasinio model and exhibits the correct chirality...
Pion-nucleon scattering in the chiral bag model
International Nuclear Information System (INIS)
Israilov, Z.Z.; Musakhanov, M.M.
1981-01-01
Pion-nucleon scattering in the (3.3) resonance region in the framework of chiral bag model(CBM) is considered. The effective Hamiltonian of πNΔ-system in the framework of the CBM contains πNN, πNΔ, πΔΔ interaction terms with the formfactor which is essentially dependent on the size and shape of the quark bag. The iteration of the Born graphs of this model provides successful description of the (3.3) and (3.1) scattering where the values of the parameters agree with CBM [ru
A chiral model for excited pions
International Nuclear Information System (INIS)
Volkov, M.K.; Weiss, C.
1996-01-01
We study radially excited mesons (π', σ') in a simple extension of the Nambu-Jona-Lasinio model with a polynomial meson-quark form factor. The form factor is introduced so that the usual form of the NJL gap equation remains unchanged. We derive the effective Lagrangian for π- and π'-mesons which describes the decoupling of the Goldstone pion in the chiral limit in agreement with current algebra. For π' masses in the range of 750 MeV and 1300 MeV f π' /f π is found to be of an order of one per cent. 12 refs
The quark and gluon condensates in the Nambu-Jona-Lasinio model
International Nuclear Information System (INIS)
Ebert, D.; Volkov, M.K.
1991-10-01
Systematic study of the role of the nonperturbative gluon condensate arising in a QCD motivated NJL model is presented. The effects of the gluon condensate on meson coupling constants, the pion decay constant, quark condensate and mass formulae are investigated. An interesting result is the decrease of the scale Λ of chiral symmetry breaking. (author). 21 refs
Quasilocal quark models as effective theory of non-perturbative QCD
International Nuclear Information System (INIS)
Andrianov, A.A.
2006-01-01
We consider the Quasilocal Quark Model of NJL type (QNJLM) as effective theory of non-perturbative QCD including scalar (S), pseudo-scalar (P), vector (V) and axial-vector (A) four-fermion interaction with derivatives. In the presence of a strong attraction in the scalar channel the chiral symmetry is spontaneously broken and as a consequence the composite meson states are generated in all channels. With the help of Operator Product Expansion the appropriate set of Chiral Symmetry Restoration (CSR) Sum Rules in these channels are imposed as matching rules to QCD at intermediate energies. The mass spectrum and some decay constants for ground and excited meson states are calculated
Quark compound Bag model for NN scattering up to 1 GeV
International Nuclear Information System (INIS)
Fasano, C.; Lee, T.S.H.
1987-01-01
A Quark Compound Bag model has been constructed to describe NN s-wave scattering up to 1 GeV. The model contains a vertex interaction H/sub D/leftrightarrow/NN/ for describing the excitation of a confined six-quark Bag state, and a meson-exchange interaction obtained from modifying the phenomenological core of the Paris potential. Explicit formalisms and numerical results are presented to reveal the role of the Bag excitation mechanism in determining the relative wave function, P- and S-matrix of NN scattering. We explore the merit as well as the shortcoming of the Quark Compound Bag model developed by the ITEP group. It is shown that the parameters of the vertex interaction H/sub D/leftrightarrow/NN/ can be more rigorously determined from the data if the notation of the Chiral/Cloudy Bag model is used to allow the presence of the background meson-exchange interaction inside Bag excitation region. The application of the model in the study of quark degrees of freedom in nuclei is discussed. 41 refs., 6 figs., 3 tabs
Physical properties of the chiral quantum baryon
International Nuclear Information System (INIS)
Mignaco, A.J.; Wulck, S.
1989-01-01
It is presented an account to understand the quantum chiral baryon, which a stable chiral soliton with baryon number one obtained after first quantization by collective coordinates. Starting from the exact series solution to the non-linear sigma model with the hedge-hog configuration, the values of several physical quantities (mass, axial weak coupling, gyromagnetic ratios and radii) as a function of the order of Pade approximants used as approximanted representations of the solution, are calculated. It turns out that consistent results may be obtained, but a better approximation should be developed. (author) [pt
Quark Loop Effects on Dressed Gluon Propagator in Framework of Global Color Symmetry Model
Institute of Scientific and Technical Information of China (English)
ZONG Hong-Shi; SUN Wei-Min
2006-01-01
Based on the global color symmetry model (GCM), a method for obtaining the quark loop effects on the dressed gluon propagator in GCM is developed. In the chiral limit, it is found that the dressed gluon propagator containing the quark loop effects in the Nambu-Goldstone and Wigner phases are quite different. In solving the quark self-energy functions in the two different phases and subsequent study of bag constant one should use the above dressed gluon propagator as input. The above approach for obtaining the current quark mass effects on the dressed gluon propagator is quite general and can also be used to calculate the chemical potential dependence of the dressed gluon propagator.
Quark-gluon vertex from the Landau gauge Curci-Ferrari model
Peláez, Marcela; Tissier, Matthieu; Wschebor, Nicolás
2015-08-01
We investigate the quark-gluon three-point correlation function within a one-loop computation performed in the Curci-Ferrari massive extension of the Faddeev-Popov gauge-fixed action. The mass term is used as a minimal way for taking into account the influence of the Gribov ambiguity. Our results, with renormalization-group improvement, are compared with lattice data. We show that the comparison is, in general, very satisfactory for the functions which are compatible with chiral symmetry, except for one. We argue that this may be due to large systematic errors when extracting this function from lattice simulations. The quantities which break chiral symmetry are more sensitive to the details of the renormalization scheme. We, however, manage to reproduce some of them with good precision. The chosen parameters allow us to simultaneously fit the quark mass function coming from the quark propagator with reasonable agreement.
Elimination of the Landau ghost from chiral solitons
International Nuclear Information System (INIS)
Hartmann, J.; Beck, F.; Bentz, W.
1994-01-01
We show a practical way based on the Kaellen-Lehmann representation for the two-point functions to eliminate the instability of the vacuum against formation of small sized meson configurations in the chiral σ model
Physics of chiral symmetry breaking
International Nuclear Information System (INIS)
Shuryak, E.V.
1991-01-01
This subsection of the 'Modeling QCD' Workshop has included five talks. E. Shuryak spoke on 'Recent Progress in Understanding Chiral Symmetry Breaking'; below it is split into two parts: (i) a mini-review of the field and (ii) a brief presentation of the status of the theory of interacting instantons. The next sections correspond to the following talks: (iii) K. Goeke et al., 'Chiral Restoration and Medium Corrections to Nucleon in the NJL Model'; (iv) M. Takizawa and K. Kubodera, 'Study of Meson Properties and Quark Condensates in the NJL Model with Instanton Effects'; (v) G. Klein and A. G. Williams, 'Dynamical Chiral Symmetry Breaking in Dual QCD'; and (vi) R. D. Ball, 'Skyrmions and Baryons.' (orig.)
Non-integrable dynamics of matter-wave solitons in a density-dependent gauge theory
Dingwall, R. J.; Edmonds, M. J.; Helm, J. L.; Malomed, B. A.; Öhberg, P.
2018-04-01
We study interactions between bright matter-wave solitons which acquire chiral transport dynamics due to an optically-induced density-dependent gauge potential. Through numerical simulations, we find that the collision dynamics feature several non-integrable phenomena, from inelastic collisions including population transfer and radiation losses to the formation of short-lived bound states and soliton fission. An effective quasi-particle model for the interaction between the solitons is derived by means of a variational approximation, which demonstrates that the inelastic nature of the collision arises from a coupling of the gauge field to velocities of the solitons. In addition, we derive a set of interaction potentials which show that the influence of the gauge field appears as a short-range potential, that can give rise to both attractive and repulsive interactions.
Chiral perturbation theory approach to hadronic weak amplitudes
International Nuclear Information System (INIS)
Rafael, E. de
1989-01-01
We are concerned with applications to the non-leptonic weak interactions in the sector of light quark flavors: u, d and s. Both strangeness changing ΔS=1 and ΔS=2 non-leptonic transitions can be described as weak perturbations to the strong effective chiral Lagrangian; the chiral structure of the weak effective Lagrangian being dictated by the transformation properties of the weak non-leptonic Hamiltonian of the Standard Model under global SU(3) Left xSU(3) Right rotations of the quark-fields. These lectures are organized as follows. Section 2 gives a review of the basic properties of chiral symmetry. Section 3 explains the effective chiral realization of the non-leptonic weak Hamiltonian of the Standard Model to lowest order in derivatives and masses. Section 4 deals with non-leptonic weak transitions in the presence of electromagnetism. Some recent applications to radiative kaon decays are reviewed and the effect of the so called electromagnetic penguin like diagrams is also discussed. Section 5 explains the basic ideas of the QCD-hadronic duality approach to the evaluation of coupling constants of the non-leptonic chiral weak Lagrangian. (orig./HSI)
Bryon, Jacob
2017-09-01
The chiral magnetic effect (CME) arises from the chirality imbalance of quarks and its interaction to the strong magnetic field generated in non-central heavy-ion collisions. Possible formation of domains of quarks with chirality imbalances is an intrinsic property of the Quantum ChromoDynamics (QCD), which describes the fundamental strong interactions among quarks and gluons. Azimuthal-angle correlations have been used to measure the magnitude of charge- separation across the reaction plane, which was predicted to arise from the CME. However, backgrounds from collective motion (flow) of the collision system can also contribute to the correlation observable. In this poster, we investigate the magnitude of the background utilizing the AMPT model, which contains no CME signals. We demonstrate, for Au +Au collisions at 200 and 39 GeV, a scheme to remove the flow background via the event-shape engineering with the vanishing magnitude of the flow vector. We also calculate the ensemble average of the charge-separation observable, and provide a background baseline for the experimental data.
Chiral measurements with the Fixed-Point Dirac operator and construction of chiral currents
International Nuclear Information System (INIS)
Hasenfratz, P.; Hauswirth, S.; Holland, K.; Joerg, T.; Niedermayer, F.
2002-01-01
In this preliminary study, we examine the chiral properties of the parametrized Fixed-Point Dirac operator D FP , see how to improve its chirality via the Overlap construction, measure the renormalized quark condensate Σ-circumflex and the topological susceptibility χ t , and investigate local chirality of near zero modes of the Dirac operator. We also give a general construction of chiral currents and densities for chiral lattice actions
Singular solitons of generalized Camassa-Holm models
International Nuclear Information System (INIS)
Tian Lixin; Sun Lu
2007-01-01
Two generalizations of the Camassa-Holm system associated with the singular analysis are proposed for Painleve integrability properties and the extensions of already known analytic solitons. A remarkable feature of the physical model is that it has peakon solution which has peak form. An alternative WTC test which allowed the identifying of such models directly if formulated in terms of inserting a formed ansatz into these models. For the two models have Painleve property, Painleve-Baecklund systems can be constructed through the expansion of solitons about the singularity manifold. By the implementations of Maple, plentiful new type solitonic structures and some kink waves, which are affected by the variation of energy, are explored. If the energy is infinite in finite time, there will be a collapse in soliton systems by direct numerical simulations. Particularly, there are two collapses coexisting in our regular solitons, which occurred around its central regions. Simulation shows that in the bottom of periodic waves arises the non-zero parts of compactons and anti-compactons. We also get floating solitary waves whose amplitude is infinite. In contrary to which a finite-amplitude blow-up soliton is obtained. Periodic blow-ups are found too. Special kinks which have periodic cuspons are derived
Siegel's chiral boson and the chiral Schwinger model
International Nuclear Information System (INIS)
Berger, T.
1992-01-01
In this paper Siegel's proposal for a Lagrangian formulation of a chiral boson is analyzed by applying recent results on 2d chiral quantum gravity. A model is derived whose solution consists of a massive scalar and two massless chiral scalars. Therefore it is a minimally bosonized two-fermion chiral Schwinger model
SU(2 color NJL model and EOS of quark-hadron matter at finite temperature and density
Directory of Open Access Journals (Sweden)
Weise Wolfram
2012-02-01
Full Text Available We study the NJL model with the Polyakov loop in the SU(2-color case for the EOS of quark-hadron matter at finite temperature and density. We consider the spontaneous chiral symmetry breaking and the diquark condensation together with the behavior of the Polyakov loop for the phase diagram of quark-hadron matter. We discuss the spectrum of mesons and diquark baryons (boson at finite temperature and density.We derive also the linear sigma model Lagrangian for diquark baryon and mesons.
Modeling chiral criticality and its consequences for heavy-ion collisions
Energy Technology Data Exchange (ETDEWEB)
Almasi, Gabor [Gesellschaft fuer Schwerionenforschung, GSI, Darmstadt (Germany); Friman, Bengt [Gesellschaft fuer Schwerionenforschung, GSI, Darmstadt (Germany); ExtreMe Matter Institute (EMMI), Darmstadt (Germany); Redlich, Krzysztof [ExtreMe Matter Institute (EMMI), Darmstadt (Germany); University of Wroclaw, Faculty of Physics and Astronomy, Wroclaw (Poland); Department of Physics, Duke University, Durham, NC (United States)
2016-07-01
We explore the critical fluctuations near the chiral critical endpoint (CEP), which belongs to the Z(2) universality class, in a chiral effective model and discuss possible signals of the CEP, recently explored in nuclear collision experiments. Particular attention is attributed to the dependence of such signals on the location of the phase boundary and the CEP relative to the hypothetical freeze-out conditions in nuclear collisions. We argue that in effective models freeze-out fits to heavy-ion results should not be used directly, and relevant quantities should be investigated on lines of the phase diagram, that are defined self-consistently in the framework of the model. We discuss possible choices for such an approach. Additionally we discuss the effect of the repulsive vector interaction of quarks on the location of the CEP and on the structure of the baryon number cumulant ratios.
Chiral-symmetry breaking and confinement in Minkowski space
Energy Technology Data Exchange (ETDEWEB)
Biernat, Elmer P. [Unibersidade de Lisboa, 104-001, Lisboa, Portugal; Pena, M. T. [Universidade de Lisboa, 1049-001, Lisboa, Portugal; Ribiero, J. E. [Universidade de Lisboa, 1049-001 Lisboa, Portugal; Stadler, Alfred [Universidade de Ãvora, 7000-671 Ãvora, Portugal; Universidade de Lisboa, 1049-001 Lisboa, Portugal; Gross, Franz [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-01-01
We present a model for the quark-antiquark interaction formulated in Minkowski space using the Covariant Spectator Theory. The quark propagators are dressed with the same kernel that describes the interaction between different quarks. By applying the axial-vector Ward-Takahashi identity we show that our model satisfies the Adler-zero constraint imposed by chiral symmetry. For this model, our Minkowski-space results of the dressed quark mass function are compared to lattice QCD data obtained in Euclidean space. The mass function is then used in the calculation of the electromagnetic pion form factor in relativistic impulse approximation, and the results are presented and compared with the experimental data from JLab.
Chiral-symmetry breaking and confinement in Minkowski space
International Nuclear Information System (INIS)
Biernat, Elmar P.; Peña, M. T.; Ribeiro, J. E.; Stadler, Alfred; Gross, Franz
2016-01-01
We present a model for the quark-antiquark interaction formulated in Minkowski space using the Covariant Spectator Theory. The quark propagators are dressed with the same kernel that describes the interaction between different quarks. By applying the axial-vector Ward-Takahashi identity we show that our model satisfies the Adler-zero constraint imposed by chiral symmetry. For this model, our Minkowski-space results of the dressed quark mass function are compared to lattice QCD data obtained in Euclidean space. The mass function is then used in the calculation of the electromagnetic pion form factor in relativistic impulse approximation, and the results are presented and compared with the experimental data from JLab
Chiral-symmetry breaking and confinement in Minkowski space
Energy Technology Data Exchange (ETDEWEB)
Biernat, Elmar P. [Centro de Física Teórica de Partículas (CFTP), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisboa (Portugal); Peña, M. T. [Centro de Física Teórica de Partículas (CFTP), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisboa (Portugal); Departamento de Física, Instituto Superior Técnico (IST), Universidadede Lisboa, 1049-001 Lisboa (Portugal); Ribeiro, J. E. [Centro de Física das Interações Fundamentais (CFIF), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisboa (Portugal); Stadler, Alfred [Departamento de Física, Universidade de Évora, 7000-671 Évora (Portugal); Centro de Física Teórica de Partículas (CFTP), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisboa (Portugal); Gross, Franz [Thomas Jefferson National Accelerator Facility (JLab), Newport News, Virginia 23606 (United States)
2016-01-22
We present a model for the quark-antiquark interaction formulated in Minkowski space using the Covariant Spectator Theory. The quark propagators are dressed with the same kernel that describes the interaction between different quarks. By applying the axial-vector Ward-Takahashi identity we show that our model satisfies the Adler-zero constraint imposed by chiral symmetry. For this model, our Minkowski-space results of the dressed quark mass function are compared to lattice QCD data obtained in Euclidean space. The mass function is then used in the calculation of the electromagnetic pion form factor in relativistic impulse approximation, and the results are presented and compared with the experimental data from JLab.
Deconfining chiral transition in QCD on the lattice
International Nuclear Information System (INIS)
Kanaya, Kazuyuki
1995-01-01
The deconfining chiral transition in finite-temperature QCD is studied on the lattice using Wilson quarks. After discussing the nature of chiral limit with Wilson quarks, we first study the case of two degenerate quarks N F =2, and find that the transition is smooth in the chiral limit on both N t =4 and 6 lattices. For N F =3, on the other hand, clear two state signals are observed for m q t =4 lattices. For a more realistic case of N F =2+1, i.e. two degenerate u and d-quarks and a heavier s-quark, we study the cases m s ≅ 150 and 400 MeV with m u = m d ≅ 0: In contrast to a previous result with staggered quarks, clear two state signals are observed for both cases, suggesting a first order QCD phase transition in the real world. (author)
Energy Technology Data Exchange (ETDEWEB)
Hong, Byungsik [Korea University, Seoul (Korea, Republic of)
2017-07-15
Topological fluctuation of the gluon field in quantum chromodynamics modifies the vacuum structure, and causes various chiral anomalies. In the strong magnetic field generated by semi-central heavy-ion collisions, the axial and vector density fluctuations propagate along the external magnetic field, called the chiral magnetic wave. Up to now the investigation of the various chiral anomalies in heavy ion collisions has been focussed on the charge distribution in the transverse plane. However, this paper points out that the information on the charge distribution is not enough and the spin effect should also be taken into account. Considering the charge and spin distributions together, π{sup ±} with spin 0 are not proper particle species to study the chiral anomalies, as the signal may be significantly suppressed as one of the constituent (anti)quarks should come from background to form the pseudoscalar states. It is, therefore, necessary to analyze explicitly the vector mesons with spin 1 (K⋆{sup ±} (892)) and baryons with spin 3/2 (Δ{sup ++}(1232), Σ{sup −} (1385) and Ω{sup −} ). If the chiral anomaly effects exist, the elliptic flow parameter is expected to be larger for negative particles for each particle species.
Inhomogeneous chiral symmetry breaking in isospin-asymmetric strong-interaction matter
Energy Technology Data Exchange (ETDEWEB)
Nowakowski, Daniel
2017-07-01
In this thesis we investigate the effects of an isospin asymmetry on inhomogeneous chiral symmetry breaking phases, which are characterized by spatially modulated quarkantiquark condensates. In order to determine the relevance of such phases for the phase diagram of strong-interaction matter, a two-flavor Nambu-Jona-Lasinio model is used to study the properties of the ground state of the system. Confirming the presence of inhomogeneous chiral symmetry breaking in isospin-asymmetric matter for a simple Chiral Density Wave, we generalize the modulation of the quark-antiquark pairs to more complicated shapes and study the effects of different degrees of flavor-mixing on the inhomogeneous phase at non-zero isospin asymmetry. Then, we investigate the occurrence of crystalline chiral symmetry breaking phases in charge-neutral matter, from which we determine the influence of crystalline phases on a quark star by calculating mass-radius sequences. Finally, our model is extended through color-superconducting phases and we study the interplay of these phases with inhomogeneous chiral-symmetry breaking at non-vanishing isospin asymmetry, before we discuss our findings.
Mass generation and chiral symmetry breaking by pseudoparticles
International Nuclear Information System (INIS)
Hietarinta, J.; Palmer, W.F.; Pinsky, S.S.
1978-01-01
Massless QCD is studied with regard to mass generation and chiral SU(N/sub f/) symmetry breaking from pseudoparticle effects. While mass is generated when there is only one massless quark, and chiral U(1) is always broken, no rigorous indication of the breaking of chiral SU(N/sub f/) and mass generation is seen when there are more than one massless quarks in the original theory
Magnetic test of chiral dynamics in QCD
International Nuclear Information System (INIS)
Simonov, Yu.A.
2014-01-01
Strong magnetic fields in the range eB≫m π 2 effectively probe internal quark structure of chiral mesons and test basic parameters of the chiral theory, such as 〈q-barq〉,f π . We argue on general grounds that 〈q-barq〉 should grow linearly with eB when charged quark degrees of freedom come into play. To make explicit estimates we extend the previously formulated chiral theory, including quark degrees of freedom, to the case of strong magnetic fields and show that the quark condensate |〈q-barq〉| u,d grows quadratically with eB for eB<0.2 GeV 2 and linearly for higher field values. These results agree quantitatively with recent lattice data and differ from χPT predictions
Non-leptonic decays of K-mesons within the chiral quark model
International Nuclear Information System (INIS)
Bergan, A.E.
1996-01-01
This theses is based upon four previously printed paper. The main result of the first paper was that a very small contribution to K o -anti K o was found for the siamese penguin diagram with a momentum dependent penguin coefficient. The calculation was done with different regularizations. The same momentum dependent penguin interaction was used in the second paper. Dimensional regularization made it possible to calculate analytical results for K→φ, and a relatively small g 8 1/2 factor was found due to large subleading terms. In the third paper nonperturbative effects on the B K parameter were obtained. To order (G 3 ) a vanishing result appeared due to a complete cancellation among the 20 contributing diagrams. In the fourth paper a calculation was made of K→φ which included non-diagonal self-energy effects due to the s→d transition. This calculation made it possible to include a heavy top quark. The calculation was done in two ways. First the unphysical K→φ transition was calculated. The result was then related to the physical K→2φ decay due to chiral symmetry. Then the same result was obtained by a direct calculation of K→2φ. In the CP-conserving case the contribution was small while the CP-violating part was sizable. Due to a large cancellation between the operator Q 6 and Q 8 the contribution was of the same size as ε/ε itself. 76 refs
Chiral dynamics with (non)strange quarks
International Nuclear Information System (INIS)
Kubis, Bastian; Meißner, Ulf-G.
2017-01-01
We review the results and achievements of the project B.3. Topics addressed include pion photoproduction off the proton and off deuterium, three-flavor chiral perturbation theory studies, chiral symmetry tests in Goldstone boson decays, the development of unitarized chiral perturbation theory to next-to-leading order, the two-pole structure of the Λ(1405), the dynamical generation of the lowest S_1_1 resonances, the theory of hadronic atoms and its application to various systems, precision studies in light-meson decays based on dispersion theory, the Roy–Steiner analysis of pion–nucleon scattering, a high-precision extraction of the elusive pion–nucleon σ-term, and aspects of chiral dynamics in few-nucleon systems.
Chiral dynamics with (non)strange quarks
Kubis, Bastian; Meißner, Ulf-G.
2017-01-01
We review the results and achievements of the project B.3. Topics addressed include pion photoproduction off the proton and off deuterium, three-flavor chiral perturbation theory studies, chiral symmetry tests in Goldstone boson decays, the development of unitarized chiral perturbation theory to next-to-leading order, the two-pole structure of the Λ(1405), the dynamical generation of the lowest S11 resonances, the theory of hadronic atoms and its application to various systems, precision studies in light-meson decays based on dispersion theory, the Roy-Steiner analysis of pion-nucleon scattering, a high-precision extraction of the elusive pion-nucleon σ-term, and aspects of chiral dynamics in few-nucleon systems.
Non-leptonic weak decay of hadrons and chiral symmetry
International Nuclear Information System (INIS)
Suzuki, Katsuhiko
2000-01-01
We review the non-leptonic weak decay of hyperons and ΔI=1/2 rule with a special emphasis on the role of chiral symmetry. The soft-pion theorem provides a powerful framework to understand the origin of ΔI=1/2 rule qualitatively. However, quantitative description is still incomplete in any model of the hadrons. Naive chiral perturbation theory cannot explain the parity-conserving and violating amplitudes simultaneously, and convergence of the chiral expansion seems to be worse. We demonstrate how the non-leptonic weak decay amplitudes are sensitive to the quark-pair correlation in the baryons, and show the importance of the strong quark correlation in the spin-0 channel to reproduce the experimental data. We finally remark several related topics. (author)
Weyl solitons in three-dimensional optical lattices
Shang, Ce; Zheng, Yuanlin; Malomed, Boris A.
2018-04-01
Weyl fermions are massless chiral quasiparticles existing in materials known as Weyl semimetals. Topological surface states, associated with the unusual electronic structure in the Weyl semimetals, have been recently demonstrated in linear systems. Ultracold atomic gases, featuring laser-assisted tunneling in three-dimensional optical lattices, can be used for the emulation of Weyl semimetals, including nonlinear effects induced by the collisional nonlinearity of atomic Bose-Einstein condensates. We demonstrate that this setting gives rise to topological states in the form of Weyl solitons at the surface of the underlying optical lattice. These nonlinear modes, being exceptionally robust, bifurcate from linear states for a given quasimomentum. The Weyl solitons may be used to design an efficient control scheme for topologically protected unidirectional propagation of excitations in light-matter-interaction physics. After the recently introduced Majorana and Dirac solitons, the Weyl solitons proposed in this work constitute the third (and the last) member in this family of topological solitons.
Hopf solitons in the Nicole model
International Nuclear Information System (INIS)
Gillard, Mike; Sutcliffe, Paul
2010-01-01
The Nicole model is a conformal field theory in a three-dimensional space. It has topological soliton solutions classified by the integer-valued Hopf charge, and all currently known solitons are axially symmetric. A volume-preserving flow is used to construct soliton solutions numerically for all Hopf charges from 1 to 8. It is found that the known axially symmetric solutions are unstable for Hopf charges greater than 2 and new lower energy solutions are obtained that include knots and links. A comparison with the Skyrme-Faddeev model suggests many universal features, though there are some differences in the link types obtained in the two theories.
International Nuclear Information System (INIS)
Wilets, L.; Bickeboeller, M.; Birse, M.C.
1985-01-01
A summary of recent and current research on the Soliton Bag Model is presented. The unique feature of the model, namely dynamics, is emphasized, since this permits calculation of reactions within the framework of a covariant effective Lagrangian. One gluon exchange effects are included. 17 refs., 3 figs
Thermodynamics of lattice QCD with massless quarks and chiral 4-fermion interactions
International Nuclear Information System (INIS)
Kogut, J. B.
1998-01-01
N f = 2 lattice QCD with massless quarks and a weak 4-fermion interaction appears to have the expected second order transition, at least for N t ≥ 6. More work is needed to clarify the N t = 4 case. With more statistics the N t = 6 simulations should produce an accurate determination of the critical exponent β m . Moving to finite mass at β = β c should allow an accurate determination of σ. Hadronic screening masses need further analysis. Other order parameters remain to be analyzed. Unfortunately, there is no obvious way to include 4-fermion interactions with full SU(2) x SU(2) chiral flavor symmetry
Nucleon electromagnetic form factors in a relativistic quark model with chiral symmetry
Energy Technology Data Exchange (ETDEWEB)
Barik, N; Das, M
1987-05-01
The nucleon electromagnetic form factors are computed in an independent quark model based on the Dirac equation. Corrections for centre-of-mass motion and pion-cloud effects are incorporated. Results for static quantities are in reasonable agreement with the experimental data.
Chiral density wave versus pion condensation at finite density and zero temperature
Andersen, Jens O.; Kneschke, Patrick
2018-04-01
The quark-meson model is often used as a low-energy effective model for QCD to study the chiral transition at finite temperature T , baryon chemical potential μB , and isospin chemical potential μI . We determine the parameters of the model by matching the meson and quark masses, as well as the pion decay constant to their physical values using the on shell (OS) and modified minimal subtraction (MS ¯ ) schemes. In this paper, the existence of different phases at zero temperature is studied. In particular, we investigate the competition between an inhomogeneous chiral condensate and a homogeneous pion condensate. For the inhomogeneity, we use a chiral-density wave ansatz. For a sigma mass of 600 MeV, we find that an inhomogeneous chiral condensate exists only for pion masses below approximately 37 MeV. We also show that due to our parameter fixing, the onset of pion condensation takes place exactly at μIc=1/2 mπ in accordance with exact results.
Towards a realistic composite model of quarks and leptons
International Nuclear Information System (INIS)
Li Xiaoyuan; Marshak, R.E.
1985-06-01
Within the context of the 't Hooft anomaly matching scheme, some guiding principles for the model building are discussed with an eye to low energy phenomenology. It is argued that Λsub(ch) (chiral symmetry breaking scale of the global color-flavor group Gsub(CF)) proportional Λsub(MC) (metacolor scale) and Λ sub(gsub(CF)) (unification scale of the gauge subgroup of Gsub(CF)) < or approx. Λsub(ch). As illustrations of the method, two composite models are suggested that can give rise to three or four generations of ordinary quarks and leptons without exotic fermions. (orig.)
Electromagnetic properties of light and heavy baryons in the relativistic quark model
International Nuclear Information System (INIS)
Nicmorus Marinescu, Diana
2007-01-01
model reveals an exact agreement in leading order with the model-independent predictions for the magnetic moments of the heavy baryons. For the light sector, a Lorentz covariant chiral quark Lagrangian is used to dress the constituent quarks by pseudoscalar meson clouds. The main achievement consists in the factorization of the valence quark contributions and the meson cloud contributions in the calculation of electromagnetic properties of light baryons. (orig.)
Electromagnetic properties of light and heavy baryons in the relativistic quark model
Energy Technology Data Exchange (ETDEWEB)
Nicmorus Marinescu, Diana
2007-06-14
within this model reveals an exact agreement in leading order with the model-independent predictions for the magnetic moments of the heavy baryons. For the light sector, a Lorentz covariant chiral quark Lagrangian is used to dress the constituent quarks by pseudoscalar meson clouds. The main achievement consists in the factorization of the valence quark contributions and the meson cloud contributions in the calculation of electromagnetic properties of light baryons. (orig.)
Confinement, Chiral Symmetry Breaking and it's Restoration using Dual QCD Formalism
Directory of Open Access Journals (Sweden)
Punetha Garima
2018-01-01
Full Text Available Utilizing the dual QCD model in term of magnetic symmetry structure of non- Abelian gauge theories, the dynamical chiral-symmetry breaking using Schwinger-Dyson equation has been investigated. A close relation among the color confinement and chiralsymmetry breaking has been observed and demonstrated by computing dynamical parameters. The recovery of the chiral symmetry has also been discussed at finite temperature through the variation of quark mass function and quark condensate which gradually decreases with temperature and vanishes suddenly near the critical temperature.
Nucleon electromagnetic form factors in a relativistic quark model with chiral symmetry
International Nuclear Information System (INIS)
Barik, N.
1987-01-01
The nucleon electromagnetic form factors are computed in an independent quark model based on the Dirac equation. Corrections for centre-of-mass motion and pion-cloud effects are incorporated. Results for static quantities are in reasonable agreement with the experimental data. (author)
Effective lagrangian for strong interactions
International Nuclear Information System (INIS)
Jain, P.
1988-01-01
We attempt to construct a realistic phenomenological Lagrangian in order to describe strong interactions. This is in general a very complicated problem and we shall explore its various aspects. We first include the vector mesons by writing down the most general chiral invariant terms proportional to the Levi-Civita symbol ε μναβ . These terms involve three unknown coefficients, which are calculated by using the experimental results of strong interaction processes. We then calculate the static nucleon properties by finding the solitonic excitations of this model. The results turn out to be, as is also the case for most other vector-pseudoscalar Lagrangians, better than the Skyrme model but are still somewhat different from the experiments. Another aspect that we shall study is the incorporation of scale anomaly of QCD into the Skyrme model. We thus introduce a scalar glueball in our Lagrangian. Here we find an interesting result that the effective glue field dynamically forms a bag for the soliton. Depending on the values of the parameters, we get either a deep bag or a shallow bag. However by including the scalar meson, we find that to get realistic scalar sector we must have the shallow bag. Finally we show some intriguing connections between the chiral quark model, in which the nucleon is described as a solitonic excitation, and the ordinary potential binding quark model
Effective chiral restoration in the ρ' meson in lattice QCD
International Nuclear Information System (INIS)
Glozman, L. Ya.; Lang, C. B.; Limmer, Markus
2010-01-01
In simulations with dynamical quarks it has been established that the ground state ρ in the infrared is a strong mixture of the two chiral representations (0,1)+(1,0) and (1/2,1/2) b . Its angular momentum content is approximately the 3 S 1 partial wave. Effective chiral restoration in an excited ρ-meson would require that in the infrared this meson couples predominantly to one of the two representations. The variational method allows one to study the mixing of interpolators with different chiral transformation properties in the nonperturbatively determined excited state at different resolution scales. We present results for the first excited state of the ρ-meson using simulations with n f =2 dynamical quarks. We point out, that in the infrared a leading contribution to ρ ' =ρ(1450) comes from (1/2,1/2) b , in contrast to the ρ. The ρ ' wave function contains a significant contribution of the 3 D 1 wave which is not consistent with the quark model prediction.
Effective chiral restoration in the ρ' meson in lattice QCD
Glozman, L. Ya.; Lang, C. B.; Limmer, Markus
2010-11-01
In simulations with dynamical quarks it has been established that the ground state ρ in the infrared is a strong mixture of the two chiral representations (0,1)+(1,0) and (1/2,1/2)b. Its angular momentum content is approximately the S13 partial wave. Effective chiral restoration in an excited ρ-meson would require that in the infrared this meson couples predominantly to one of the two representations. The variational method allows one to study the mixing of interpolators with different chiral transformation properties in the nonperturbatively determined excited state at different resolution scales. We present results for the first excited state of the ρ-meson using simulations with nf=2 dynamical quarks. We point out, that in the infrared a leading contribution to ρ'=ρ(1450) comes from (1/2,1/2)b, in contrast to the ρ. The ρ' wave function contains a significant contribution of the D13 wave which is not consistent with the quark model prediction.
Quantization of bag-like solitons
International Nuclear Information System (INIS)
Breit, J.D.
1982-01-01
The method of collective coordinates is used to quantize bag-like solitons formed by scalar and spinor fields. This method leads to approximate wave functions for quarks in the bag that are orthogonal to the translational modes. Solutions are given for the MIT bag limit of the fields. (orig.)
Heavy-light semileptonic decays in staggered chiral perturbation theory
Aubin, C.; Bernard, C.
2007-07-01
We calculate the form factors for the semileptonic decays of heavy-light pseudoscalar mesons in partially quenched staggered chiral perturbation theory (SχPT), working to leading order in 1/mQ, where mQ is the heavy-quark mass. We take the light meson in the final state to be a pseudoscalar corresponding to the exact chiral symmetry of staggered quarks. The treatment assumes the validity of the standard prescription for representing the staggered “fourth-root trick” within SχPT by insertions of factors of 1/4 for each sea-quark loop. Our calculation is based on an existing partially quenched continuum chiral perturbation theory calculation with degenerate sea quarks by Bećirević, Prelovsek, and Zupan, which we generalize to the staggered (and nondegenerate) case. As a byproduct, we obtain the continuum partially quenched results with nondegenerate sea quarks. We analyze the effects of nonleading chiral terms, and find a relation among the coefficients governing the analytic valence mass dependence at this order. Our results are useful in analyzing lattice computations of form factors B→π and D→K, when the light quarks are simulated with the staggered action.
Energy Technology Data Exchange (ETDEWEB)
Price, C E; Shepard, J R [Colorado Univ., Boulder (USA). Dept. of Physics
1991-04-18
We compute properties of the nucleon in a hybrid chiral model based on the linear {sigma}-model with quark degrees of freedom treated explicity. In contrast to previous calculations, we do not use the hedgehog ansatz. Instead we solve self-consistently for a state with well defined spin and isospin projections. We allow this state to be deformed and find that, although d- and g-state admixtures in the predominantly s-state single quark wave functions are not large, they have profound effects on many nucleon properties including magnetic moments and g{sub A}. Our best fit parameters provide excellent agreement with experiment but are much different from those determined in hedgehog calculations. (orig.).
Phenomenology of strongly coupled chiral gauge theories
International Nuclear Information System (INIS)
Bai, Yang; Berger, Joshua; Osborne, James; Stefanek, Ben A.
2016-01-01
A sector with QCD-like strong dynamics is common in models of non-standard physics. Such a model could be accessible in LHC searches if both confinement and big-quarks charged under the confining group are at the TeV scale. Big-quark masses at this scale can be explained if the new fermions are chiral under a new U(1) ′ gauge symmetry such that their bare masses are related to the U(1) ′ -breaking and new confinement scales. Here we present a study of a minimal GUT-motivated and gauge anomaly-free model with implications for the LHC Run 2 searches. We find that the first signatures of such models could appear as two gauge boson resonances. The chiral nature of the model could be confirmed by observation of a Z ′ γ resonance, where the Z ′ naturally has a large leptonic branching ratio because of its kinetic mixing with the hypercharge gauge boson.
Heavy fermion stabilization of solitons in 1+1 dimensions
International Nuclear Information System (INIS)
Farhi, E.; Graham, N.; Jaffe, R.L.; Weigel, H.
2000-01-01
We find static solitons stabilized by quantum corrections in a (1+1) -dimensional model with a scalar field chirally coupled to fermions. This model does not support classical solitons. We compute the renormalized energy functional including one-loop quantum corrections. We carry out a variational search for a configuration that minimizes the energy functional. We find a nontrivial configuration with fermion number whose energy is lower than the same number of free fermions quantized about the translationally invariant vacuum. In order to compute the quantum corrections for a given background field we use a phase-shift parameterization of the Casimir energy. We identify orders of the Born series for the phase shift with perturbative Feynman diagrams in order to renormalize the Casimir energy using perturbatively determined counterterms. Generalizing dimensional regularization, we demonstrate that this procedure yields a finite and unambiguous energy functional
Non-leptonic decays of K-mesons within the chiral quark model
Energy Technology Data Exchange (ETDEWEB)
Bergan, A E
1997-12-31
This theses is based upon four previously printed paper. The main result of the first paper was that a very small contribution to K{sup o}-anti K{sup o} was found for the siamese penguin diagram with a momentum dependent penguin coefficient. The calculation was done with different regularizations. The same momentum dependent penguin interaction was used in the second paper. Dimensional regularization made it possible to calculate analytical results for K{yields}{phi}, and a relatively small g{sub 8}{sup 1/2} factor was found due to large subleading terms. In the third paper nonperturbative effects on the B{sub K} parameter were obtained. To order (G{sup 3}) a vanishing result appeared due to a complete cancellation among the 20 contributing diagrams. In the fourth paper a calculation was made of K{yields}{phi} which included non-diagonal self-energy effects due to the s{yields}d transition. This calculation made it possible to include a heavy top quark. The calculation was done in two ways. First the unphysical K{yields}{phi} transition was calculated. The result was then related to the physical K{yields}2{phi} decay due to chiral symmetry. Then the same result was obtained by a direct calculation of K{yields}2{phi}. In the CP-conserving case the contribution was small while the CP-violating part was sizable. Due to a large cancellation between the operator Q{sub 6} and Q{sub 8} the contribution was of the same size as {epsilon}/{epsilon} itself. 76 refs.
Reduction of the chiral order parameter by a nuclear medium
International Nuclear Information System (INIS)
Kienle, P.; Yamazaki, Toshimizu
2001-01-01
We propose a model independent procedure to deduce from the 1s-binding energy of heavy, neutron rich pionic atoms, the isovector scattering length b 1 of the pion nucleus interaction. It is related to the pion decay constant f π , the order parameter of spontaneous chiral symmetry breaking and thus to the value of the chiral quark condensate. Based on the results with pionic 205 Pb, we find with the assertion that only the isovector part of the pion-nucleus interaction be modified by a QCD effect, a reduction of the quark condensate by 30% in a 205 Pb nucleus. Forthcoming experiments to measure pionic 1s-binding energies in Sn-isotopes, including isotope shifts, will yield decisive information on the quark condensate without assertion. (orig.)
Are quarks and leptons composite
International Nuclear Information System (INIS)
Harari, H.
1982-01-01
The possibility that quarks and leptons are composite was studied. A line of reasoning was pursued which followed several steps. The standard model was assumed and the need to go beyond it was demonstrated. Different classes of ideas were considered. The notion of compositeness and its general difficulties, mainly the scale problem, were studied. A connection between composite massless fermions and an unbroken chiral symmetry was assumed. A general framework based on hypercolor and a chiral symmetry was established. The general requirements for a candidate model were established. A minimal scheme was found and its successes and failures were studied. (HK)
Current s - quark mass corrections to the form factors of D - meson semileptonic decays
International Nuclear Information System (INIS)
Hussain, F.; Ivanov, A.N.; Troitskaya, N.I.
1994-11-01
The infinite mass effective theory, when a heavy quark mass tends to infinity, and Chiral perturbation theory at the quark level, based on the extended Nambu - Jona - Lasinio model with linear realization of chiral U(3) x U(3) symmetry, are applied to the calculations of current s - quark mass corrections to the form factors of the D → K-bar e + ν e and D → K-bar * e + ν e decays. These corrections turn out to be quite significant, of the order of 7 - 20%. The theoretical results are compared with experimental data. (author). 17 refs
Chiral symmetry restoration and quasi-elastic electron-nucleus scattering
International Nuclear Information System (INIS)
Henley, E.M.; Krein, G.
1989-01-01
Chiral symmetry is known to be an important concept in hadronic interactions. It holds in QCD, but is known to be broken at low energies. It is therefore useful to study chiral symmetry and its breaking together with its consequences in nuclear physics. It is the latter phenomena we consider here. It is difficult to study nonperturbative QCD at low energies and models are needed. The Nambu-Jona-Lasinio (NJL) model fits this category; it incorporates chiral symmetry and its breaking, and allows one to study its effects in nucleons and nuclei. In particular, the constituent quark mass varies with density (ρ) and temperature (T). At high ρ and T chiral symmetry is restored. It is the ρ dependence which yields important effects in electron scattering due to partial restoration of chiral symmetry in nuclei. We begin with the NJL model with a small chiral symmetry breaking
Bulk viscosity of hot dense Quark matter in the PNJL model
International Nuclear Information System (INIS)
Xiao Shisong; Guo Panpan; Zhang Le; Hou Defu
2014-01-01
Starting from the Kubo formula and the QCD low energy theorem, we study the the bulk viscosity of hot dense quark matter in the PNJL model from the equation of state. We show that the bulk viscosity has a sharp peak near the chiral phase transition, and that the ratio of bulk viscosity over entropy rises dramatically in the vicinity of the phase transition. These results agree with those from the lattice and other model calculations. In addition, we show that the increase of chemical potential raises the bulk viscosity. (authors)
Light-quark, heavy-quark systems: An update
International Nuclear Information System (INIS)
Grinstein, B.
1993-01-01
The author reviews many of the recently developed applications of Heavy Quark Effective Theory techniques. After a brief update on Luke's theorm, he describes striking relations between heavy baryon form factors, and how to use them to estimate the accuracy of the extraction of |B cb |. He discusses factorization and compares with experiment. An elementary presentation, with sample applications, of reparametrization invariance comes next. The final and most extensive chapter in this review deals with phenomenological lagrangians that incorporate heavy-quark spin-flavor as well as light quark chiral symmetries. He compiles many interesting results and discuss the validity of the calculations
Chiral behavior of K →π l ν decay form factors in lattice QCD with exact chiral symmetry
Aoki, S.; Cossu, G.; Feng, X.; Fukaya, H.; Hashimoto, S.; Kaneko, T.; Noaki, J.; Onogi, T.; Jlqcd Collaboration
2017-08-01
We calculate the form factors of the K →π l ν semileptonic decays in three-flavor lattice QCD and study their chiral behavior as a function of the momentum transfer and the Nambu-Goldstone boson masses. Chiral symmetry is exactly preserved by using the overlap quark action, which enables us to directly compare the lattice data with chiral perturbation theory (ChPT). We generate gauge ensembles at a lattice spacing of 0.11 fm with four pion masses covering 290-540 MeV and a strange quark mass ms close to its physical value. By using the all-to-all quark propagator, we calculate the vector and scalar form factors with high precision. Their dependence on ms and the momentum transfer is studied by using the reweighting technique and the twisted boundary conditions for the quark fields. We compare the results for the semileptonic form factors with ChPT at next-to-next-to-leading order in detail. While many low-energy constants appear at this order, we make use of our data of the light meson electromagnetic form factors in order to control the chiral extrapolation. We determine the normalization of the form factors as f+(0 )=0.9636 (36 )(-35+57) and observe reasonable agreement of their shape with experiment.
Analysis of chiral symmetry breaking mechanism
International Nuclear Information System (INIS)
Guo, X. H.; Academia Sinica, Beijing; Huang, T.; CCAST
1997-01-01
The renormalization group invariant quark condensate μ is determined both from the consistent equation for quark condensate in the chiral limit and from the Schwinger-Dyson (SD) equation improved by the intermediate range QCD force singular like δ (q) which is associated with the gluon condensate. The solutions of μ in these two equations are consistent. The authors also obtain the critical strong coupling constant α c above which chiral symmetry breaks in these two approaches. The nonperturbative kernel of the SD equation makes α c smaller and μ bigger. An intuitive picture of the condensation above α c is discussed. In addition, with the help of the Slavnov-Taylor-Ward (STW) identity they derive the equations for the nonperturbative quark propagator from the SD equation in the presence of the intermediate range force and find that the intermediate-range force is also responsible for dynamical chiral symmetry breaking
Dynamical chiral-symmetry breaking in dual QCD
International Nuclear Information System (INIS)
Krein, G.; Williams, A.G.
1991-01-01
We have extended recent studies by Baker, Ball, and Zachariasen (BBZ) of dynamical chiral-symmetry breaking in dual QCD. Specifically, we have taken dual QCD to specify the nonperturbative infrared nature of the quark-quark interaction and then we have smoothly connected onto this the known leading-log perturbative QCD interaction in the ultraviolet region. In addition, we have solved for a momentum-dependent self-energy and have used the complete lowest-order dual QCD quark-quark interaction. We calculate the quark condensate left-angle bar qq right-angle and the pion decay constant f π within this model. We find that the dual QCD parameters needed to give acceptable results are reasonably consistent with those extracted from independent physical considerations by BBZ
The hadron to quark/gluon transition
International Nuclear Information System (INIS)
Brown, G.E.; Bethe, H.A.; Pizzochero, P.M.
1991-01-01
In this paper we are concerned with the hadron to quark/gluon transition. We describe the equilibrium states of hadronic matter by a Hagedorn spectrum; introducing scaling masses, as dictated by the restoration of chiral invariance with increasing temperature, we show that in the chiral SU(2) f limit there is a maximum hadron temperature (T H ) max ≅ 128 MeV. Since the quark/gluon perturbative phase involves restoration of conformal invariance, we take the bag constant to be the conformal anomaly, i.e. the gluon condensate. The stability condition P QG > 0 for the pressure requires that there is a minimum temperature; we find (T QG ) min ≅ 172 MeV for SU(2) f . According to the simple Hagedorn model, there appears to be a region of temperature between (T H ) max and (T QG ) min in which no admissible equilibrium states exist. Since the two phases cannot exist at a common temperature, in this model there is no QCD phase transition. (orig.)
Quark-flavor mixing and the nucleon strangeness form factors
International Nuclear Information System (INIS)
Ito, H.
1995-01-01
We have calculated the strangeness form factors of the nucleon G E s (Q), G M s (Q) and G A s (Q) and the electromagnetic form factors G E N (Q) as well, by using a relativistic constituent quark model of the nucleon wave function on the light-cone. Octet of Goldstone bosons (π, K, η) are assumed to induce the SU flavor mixing among the light constituent quarks; d-→K+s →d for example, and this mechanism induces the strangeness content in the nucleon. To calculate the meson-loop corrections to the electroweak couplings of constituent quarks, we have employed two models of the quark-meson vertex; (1) composite model of the Goldstone bosons (2) and (3) chiral quark Lagrangian. The loop momenta are regulated in a gauge-invariant way for both models
Essence of the Vacuum Quark Condensate
International Nuclear Information System (INIS)
Brodsky, Stanley
2010-01-01
We show that the chiral-limit vacuum quark condensate is qualitatively equivalent to the pseudoscalar meson leptonic decay constant in the sense that they are both obtained as the chiral-limit value of well-defined gauge-invariant hadron-to-vacuum transition amplitudes that possess a spectral representation in terms of the current-quark mass. Thus, whereas it might sometimes be convenient to imagine otherwise, neither is essentially a constant mass-scale that fills all spacetime. This means, in particular, that the quark condensate can be understood as a property of hadrons themselves, which is expressed, for example, in their Bethe-Salpeter or light-front wavefunctions.
Energy Technology Data Exchange (ETDEWEB)
Rahaman, Anisur, E-mail: anisur.rahman@saha.ac.in
2015-10-15
The vector type of interaction of the Thirring–Wess model was replaced by the chiral type and a new model was presented which was termed as chiral Thirring–Wess model in Rahaman (2015). The model was studied there with a Faddeevian class of regularization. Few ambiguity parameters were allowed there with the apprehension that unitarity might be threatened like the chiral generation of the Schwinger model. In the present work it has been shown that no counter term containing the regularization ambiguity is needed for this model to be physically sensible. So the chiral Thirring–Wess model is studied here without the presence of any ambiguity parameter and it has been found that the model not only remains exactly solvable but also does not lose the unitarity like the chiral generation of the Schwinger model. The phase space structure and the theoretical spectrum of this new model have been determined in the present scenario. The theoretical spectrum is found to contain a massive boson with ambiguity free mass and a massless boson.
International Nuclear Information System (INIS)
Rahaman, Anisur
2015-01-01
The vector type of interaction of the Thirring–Wess model was replaced by the chiral type and a new model was presented which was termed as chiral Thirring–Wess model in Rahaman (2015). The model was studied there with a Faddeevian class of regularization. Few ambiguity parameters were allowed there with the apprehension that unitarity might be threatened like the chiral generation of the Schwinger model. In the present work it has been shown that no counter term containing the regularization ambiguity is needed for this model to be physically sensible. So the chiral Thirring–Wess model is studied here without the presence of any ambiguity parameter and it has been found that the model not only remains exactly solvable but also does not lose the unitarity like the chiral generation of the Schwinger model. The phase space structure and the theoretical spectrum of this new model have been determined in the present scenario. The theoretical spectrum is found to contain a massive boson with ambiguity free mass and a massless boson
Bartz, Sean P.; Jacobson, Theodore
2018-04-01
The phase transition from hadronic matter to chirally symmetric quark-gluon plasma is expected to be a rapid crossover at zero quark chemical potential (μ ), becoming first order at some finite value of μ , indicating the presence of a critical point. Using a three-flavor soft-wall model of anti-de Sitter/QCD, we investigate the effect of varying the light and strange quark masses on the order of the chiral phase transition. At zero quark chemical potential, we reproduce the Columbia Plot, which summarizes the results of lattice QCD and other holographic models. We then extend this holographic model to examine the effects of finite quark chemical potential. We find that the the chemical potential does not affect the critical line that separates first-order from rapid crossover transitions. This excludes the possibility of a critical point in this model, suggesting that a different setup is necessary to reproduce all the features of the QCD phase diagram.
Energy Technology Data Exchange (ETDEWEB)
Bulava, John; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Gerhold, Philip; Kallarackal, Jim; Nagy, Attila [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humbolt-Univ. Berlin (Germany)
2011-12-15
We study a chirally invariant Higgs-Yukawa model regulated on a space-time lattice. We calculate Higgs boson resonance parameters and mass bounds for various values of the mass of the degenerate fermion doublet. Also, first results on the phase transition temperature are presented. In general, this model may be relevant for BSM scenarios with a heavy fourth generation of quarks. (orig.)
The Higgs boson resonance width from a chiral Higgs-Yukawa model on the lattice
International Nuclear Information System (INIS)
Gerhold, Philipp; Kallarackal, Jim; Humboldt-Universitaet, Berlin; Jansen, Karl
2011-11-01
The Higgs boson is a central part of the electroweak theory and is crucial to generate masses for quarks, leptons and the weak gauge bosons. We use a 4-dimensional Euclidean lattice formulation of the Higgs-Yukawa sector of the electroweak model to compute physical quantities in the path integral approach which is evaluated by means of Monte Carlo simulations thus allowing for fully non perturbative calculations. The chiral symmetry of the model is incorporated by using the Neuberger overlap Dirac operator. The here considered Higgs-Yukawa model does not involve the weak gauge bosons and furthermore, only a degenerate doublet of top- and bottom quarks are incorporated. The goal of this work is to study the resonance properties of the Higgs boson and its sensitivity to the strength of the quartic self coupling. (orig.)
Hyperon resonances in SU(3) soliton models
International Nuclear Information System (INIS)
Scoccola, N.N.
1990-01-01
Hyperon resonances excited in kaon-nucleon scattering are investigated in the framework of an SU(3) soliton model in which kaon degrees of freedom are treated as small fluctuations around an SU(2) soliton. For partial waves l≥2 the model predicts correctly the quantum numbers and average excitation energies of most of the experimentally observed Λ and Σ resonances. Some disagreements are found for lower partial waves. (orig.)
Light-quark, heavy-quark systems: An update
Grinstein, B.
1993-06-01
We review many of the recently developed applications of Heavy Quark Effective Theory techniques. After a brief update on Luke's theorem, we describe striking relations between heavy baryon form factors, and how to use them to estimate the accuracy of the extraction of (vert bar)V(sub cb)(vert bar). We discuss factorization and compare with experiment. An elementary presentation, with sample applications, of reparametrization invariance comes next. The final and most extensive chapter in this review deals with phenomenological lagrangians that incorporate heavy-quark spin-flavor as well as light quark chiral symmetries. We compile many interesting results and discuss the validity of the calculations.
Quark confinement in a constituent quark model
International Nuclear Information System (INIS)
Langfeld, K.; Rho, M.
1995-01-01
On the level of an effective quark theory, we define confinement by the absence of quark anti-quark thresholds in correlation function. We then propose a confining Nambu-Jona-Lasinio-type model. The confinement is implemented in analogy to Anderson localization in condensed matter systems. We study the model's phase structure as well as its behavior under extreme conditions, i.e. high temperature and/or high density
International Nuclear Information System (INIS)
Wilets, L.; Goldflam, R.
1983-09-01
The MIT bag was one of the earliest and most successful models of QCD, imposing confinement and including perturbative gluon interactions. An evolution of the MIT bag came with the introduction of the chiral and cloudy bags, which treat pions as elementary particles. As a model of QCD, the soliton model proposed by Friedberg and Lee is particularly attractive. It is based on a covariant field theory and is sufficiently general so that, for certain limiting cases of the adjustable parameters, it can describe either the MIT or SLAC (string) bags. The confinement mechanism appears as a dynamic field. This allows non-static processes, such as bag oscillations and bag collisions, to be calculated utilizing the well-developed techniques of nuclear many-body theory. The utilization of the model for calculating dynamical processes is discussed. 14 references
The effect of the Polyakov loop on the chiral phase transition
Directory of Open Access Journals (Sweden)
Szép Zs.
2011-04-01
Full Text Available The Polyakov loop is included in the S U(2L × S U(2R chiral quark-meson model by considering the propagation of the constituent quarks, coupled to the (σ, π meson multiplet, on the homogeneous background of a temporal gauge field, diagonal in color space. The model is solved at finite temperature and quark baryon chemical potential both in the chiral limit and for the physical value of the pion mass by using an expansion in the number of flavors Nf. Keeping the fermion propagator at its tree-level, a resummation on the pion propagator is constructed which resums infinitely many orders in 1/Nf, where O(1/Nf represents the order at which the fermions start to contribute in the pion propagator. The influence of the Polyakov loop on the tricritical or the critical point in the µq – T phase diagram is studied for various forms of the Polyakov loop potential.
Aspects of solitons in noncommutative field theories. The modified Ward model
International Nuclear Information System (INIS)
Petersen, S.
2006-01-01
In this thesis several aspects of solutions to the equations of motions to noncommutative field theories are investigated in detail. The main focus of the analysis is on the integrable chiral or modified unitary sigma model with U(n)-valued fields as introduced by Ward and its noncommutative extension where the above mentioned new solutions arise. Of particular interest in this context are to us the question of stability of static solitons and the applicability of the so-called adiabatic approach to as a means to approximate time-dependent solutions by geodesic motion in the moduli space of static solutions. After some introductory remarks we proceed to present the Ward model together with its noncommutative extension and give a unified exposition of its known static solutions. This model, as the prime example of an almost Lorentz-invariant field theory in 1+2 dimensions, has several virtues which make its analysis worthwhile. First of all it is integrable thus allowing for powerful, well developed, techniques to generate soliton solutions. At the same time these feature interaction among them. Furthermore, the commutative counterpart of the Ward model has been investigated in great detail such that many results are available for comparison. Next, the question of stability for the present static solutions is considered. This stability is governed by the quadratic form of the fluctuations, which, upon concentrating on the case of diagonal U(1) solutions, is explicitly computed. We show that the considered solutions are stable within a certain subsector of possible configurations, namely the grassmannian ones, and become unstable upon embedding them into the full unitary sigma model. Finally, we remark on some possible generalization of these results. This subject is followed, after a brief review of time-dependent Ward model solutions, by the application of the adiabatic approach, as proposed by Manton, to the static solutions. (orig.)
Some aspects of chirality: Fermion masses and chiral p-forms
Energy Technology Data Exchange (ETDEWEB)
Kleppe, A
1997-05-01
The properties of fermion mass matrices are investigated from different points of view, both within the minimal Standard Model and in extensions of the model. It is shown how mass matrix invariants are used to define the measurables of the quark mixing matrix as invariant functions of the mass matrices. One model is presented where the family pattern is suggested to originate from a kind of mass scaling. A Lagrangian density is defined for an entire charge sector, such that the existence of a Dirac field with mass m{sub 0} implies the existence of other Dirac fields where the corresponding quanta have masses Rm{sub 0}, R{sup 2}m{sub 0}, .. which are obtained by a discrete scale transformation. This suggests a certain type of democratic fermion mass matrices. Also extensions of the minimal Standard Model are investigated, obtained by including right-handed neutrinos in the model. The Standard Model extended by two right-handed neutrinos gives rise to a mass spectrum with two massive and three massless neutrinos. The phenomenological consequences of this model are discussed. The neutrino mass matrix in such a scheme has what is defined as a democratic texture. They are studied for the cases with two and three right-handed neutrinos, resp. The chiral fields that we find in the Standard Model have certain similarities with self-dual fields. Among other things, both chiral and self-dual fields suffer species doubling on the lattice. Chiral p-forms are self-dual fields that appear in twice odd dimensions. Chiral p-forms violate manifest covariance, in the same sense as manifest covariance is violated by non-covariant gauges in electrodynamics. It is shown that a covariant action can nevertheless be formulated for chiral p-forms, by introducing an infinite set of gauge fields in a carefully controlled way.
Some aspects of chirality: Fermion masses and chiral p-forms
International Nuclear Information System (INIS)
Kleppe, A.
1997-05-01
The properties of fermion mass matrices are investigated from different points of view, both within the minimal Standard Model and in extensions of the model. It is shown how mass matrix invariants are used to define the measurables of the quark mixing matrix as invariant functions of the mass matrices. One model is presented where the family pattern is suggested to originate from a kind of mass scaling. A Lagrangian density is defined for an entire charge sector, such that the existence of a Dirac field with mass m 0 implies the existence of other Dirac fields where the corresponding quanta have masses Rm 0 , R 2 m 0 , .. which are obtained by a discrete scale transformation. This suggests a certain type of democratic fermion mass matrices. Also extensions of the minimal Standard Model are investigated, obtained by including right-handed neutrinos in the model. The Standard Model extended by two right-handed neutrinos gives rise to a mass spectrum with two massive and three massless neutrinos. The phenomenological consequences of this model are discussed. The neutrino mass matrix in such a scheme has what is defined as a democratic texture. They are studied for the cases with two and three right-handed neutrinos, resp. The chiral fields that we find in the Standard Model have certain similarities with self-dual fields. Among other things, both chiral and self-dual fields suffer species doubling on the lattice. Chiral p-forms are self-dual fields that appear in twice odd dimensions. Chiral p-forms violate manifest covariance, in the same sense as manifest covariance is violated by non-covariant gauges in electrodynamics. It is shown that a covariant action can nevertheless be formulated for chiral p-forms, by introducing an infinite set of gauge fields in a carefully controlled way
Quarks in hadrons and nuclei and electromagnetic probes
International Nuclear Information System (INIS)
Faessler, Amand
1995-01-01
Deuteron properties and nuclear magnetic moments are studied in the non-relativistic quark cluster model. The quark cluster model is modified to include chiral symmetry. This reduces the number of parameters. The σ meson is exchanged between quarks and not as in earlier versions between nucleons. The charge monopole, quadrupole and magnetic-dipole form factors and the tensor polarization of the deuteron in this microscopic meson-quark cluster model are calculated. The deuteron wave function is derived from a microscopic 6-quark Hamiltonian which, in addition to a quadratic confinement potential, includes the one-pion and the one-gluon exchange potentials between quarks. The electromagnetic current operators are constructed on the quark level, i.e., the photon is coupled directly to the quarks. Aside from the one-body impulse current, pionic and gluonic exchange current corrections are included. Due to the Pauli principle on the quark level, new quark interchange terms arise in the one-body and two-body current matrix elements, that are not present on the nucleon level. While these additional quark exchange currents are small for low momentum transfers, we find that they appreciably influence the electromagnetic structure of the deuteron beyond a momentum transfer of q = 5fm -1 . (author)
Twisted mass lattice QCD with non-degenerate quark masses
International Nuclear Information System (INIS)
Muenster, Gernot; Sudmann, Tobias
2006-01-01
Quantum Chromodynamics on a lattice with Wilson fermions and a chirally twisted mass term is considered in the framework of chiral perturbation theory. For two and three numbers of quark flavours, respectively, with non-degenerate quark masses the pseudoscalar meson masses and decay constants are calculated in next-to-leading order including lattice effects quadratic in the lattice spacing a
Valence QCD: Connecting QCD to the quark model
International Nuclear Information System (INIS)
Liu, K.F.; Dong, S.J.; Draper, T.; Sloan, J.; Leinweber, D.; Woloshyn, R.M.
1999-01-01
largely attributed to the Goldstone boson exchanges between the quarks. Both of these are the consequences of the lack of chiral symmetry in valence QCD. We discuss its implications concerning the models of hadrons. copyright 1999 The American Physical Society
The ''closed'' chiral symmetry and its application to tetraquark
International Nuclear Information System (INIS)
Chen, Hua-Xing
2012-01-01
We investigate the chiral (flavor) structure of tetraquarks, and study chiral transformation properties of the ''non-exotic'' [(anti 3, 3)+(3, anti 3)] and [(8,1)+(1,8)] tetraquark chiral multiplets. We find that as long as this kind of tetraquark states contains one quark and one antiquark having the same chirality, such as q L q L anti q L anti q R + q R q R anti q R anti q L , they transform in the same way as the lowest level anti q q chiral multiplets under chiral transformations. There is only one [(anti 3, 3)+(3, anti 3)] chiral multiplet whose quark-antiquark pairs all have the opposite chirality (q L q L anti q R anti q R + q R q R anti q L anti q L ), and it transforms differently from others. Based on these studies, we construct local tetraquark currents belonging to the ''non-exotic'' chiral multiplet [(anti 3, 3)+(3, anti 3)] and having quantum numbers J PC =1 -+ . (orig.)
q-bar q condensate for light quarks beyond the chiral limit
International Nuclear Information System (INIS)
Williams, R.; Fischer, C.S.; Pennington, M.R.
2007-01-01
We determine the q-bar q condensate for quark masses from zero up to that of the strange quark within a phenomenologically successful modelling of continuum QCD by solving the quark Schwinger-Dyson equation. The existence of multiple solutions to this equation is the key to an accurate and reliable extraction of this condensate using the operator product expansion. We explain why alternative definitions fail to give the physical condensate
ISOSPIN BREAKING AND THE CHIRAL CONDENSATE.
Energy Technology Data Exchange (ETDEWEB)
CREUTZ, M.
2005-07-25
With two degenerate quarks, the chiral condensate exhibits a jump as the quark masses pass through zero. I discuss how this single transition splits into two Ising like transitions when the quarks are made non-degenerate. The order parameter is the expectation of the neutral pion field. The transitions represent long distance coherent phenomena occurring without the Dirac operator having vanishingly small eigenvalues.
Magnetic moments of the nucleon octet in a relativistic quark model with chiral symmetry
International Nuclear Information System (INIS)
Barik, N.; Dash, B.K.
1986-01-01
Incorporating the lowest-order pionic correction, the magnetic moments of the nucleon octet have been calculated in a chiral potential model. The potential, representing phenomenologically the nonperturbative gluon interactions including gluon self-couplings, is chosen with equally mixed scalar and vector parts in harmonic form. The results are in reasonable agreement with experiment
Strong evidence for spontaneous chiral symmetry breaking in (quenched) QCD
International Nuclear Information System (INIS)
Barbour, I.M.; Gibbs, P.; Schierholz, G.; Teper, M.; Gilchrist, J.P.; Schneider, H.
1983-09-01
We calculate the chiral condensate for all quark masses using Kogut-Susskind fermions in lattice-regularized quenched QCD. The large volume behaviour of at small quark masses demonstrates that the explicit U(1) chiral symmetry is spontaneously broken. We perform the calculation for β = 5.1 to 5.9 and find very good continuum renormalization group behaviour. We infer that the spontaneous breaking we observe belongs to continuum QCD. This constitutes the first unambiguous demonstration of spontaneous chiral symmetry breaking in continuum quenched QCD. (orig.)
Quark-gluon plasma (Selected Topics)
International Nuclear Information System (INIS)
Zakharov, V. I.
2012-01-01
Introductory lectures to the theory of (strongly interacting) quark-gluon plasma given at the Winter School of Physics of ITEP (Moscow, February 2010). We emphasize theoretical issues highlighted by the discovery of the low viscosity of the plasma. The topics include relativistic hydrodynamics, manifestations of chiral anomaly in hydrodynamics, superfluidity, relativistic superfluid hydrodynamics, effective stringy scalars, holographic models of Yang-Mills theories.
Possible heavy solitons in the strongly coupled Higgs sector
International Nuclear Information System (INIS)
Gipson, J.M.; Tze, H.C.
1981-01-01
In a presumed dynamically broken, minimally coupled SU(2) model, a natural Higgs mass of order 1 TeV marks the onset of a strongly interacting Higgs sector probably rich in resonance structure and inaccessible to perturbation theory. In the spirit of the chiral dynamics approach to low-energy hadron physics, the heave Higgs sector is here assumed to be well described up to one-loop effects by an SO(4) non-linear sigma-model of the Skyrme type. Taken as an effective zeroth-order lagrangian, the latter is shown to admit two varieties of finite-energy, three-dimensional localized solitons which may exist in nature. They are given by the S 3 → S 3 Chern-Pontryagin maps and the S 3 → S 2 twisted toroid Hopf maps, respectively. Upper and lower bounds on the masses of the hedgehog and twisted ring with kik-number one are found to lie in the few TeV range. By a topological theorem of Finkelstein et al., both types of solitons provide classical analogues of superheavy fermion states. The connection between these solitons with other extended objects predicted by Nambu and Huang, and their possible experimental signatures are sketched. Finally, the extension of our results to the more realistic SU(2) x U(1) Weinberg-Salam model is discussed. (orig.)
Nucleon structure and properties of dense matter
International Nuclear Information System (INIS)
Kutschera, M.; Pethick, C.J.; Illinois Univ., Urbana, IL
1988-01-01
We consider the properties of dense matter in a framework of the Skyrme soliton model and the chiral bag model. The influence of the nucleon structure on the equation of state of dense matter is emphasized. We find that in both models the energy per unit volume is proportional to n 4/3 , n being the baryon number density. We discuss the properties of neutron stars with a derived equation of state. The role of many-body effects is investigated. The effect of including higher order terms in the chiral lagrangian is examined. The phase transition to quark matter is studied. 29 refs., 6 figs. (author)
Facets of confinement and dynamical chiral symmetry breaking
International Nuclear Information System (INIS)
Maris, P.; Raya, A.; Roberts, C.D.; Schmidt, S.M.
2003-01-01
The gap equation is a cornerstone in understanding dynamical chiral symmetry breaking and may also provide clues to confinement. A symmetry-preserving truncation of its kernel enables proofs of important results and the development of an efficacious phenomenology. We describe a model of the kernel that yields: a momentum-dependent dressed-quark propagator in fair agreement with quenched lattice-QCD results; and chiral limit values, f π 0 =68 MeV and left angle anti q q right angle =-(190 MeV) 3 . It is compared with models inferred from studies of the gauge sector. (orig.)
Renormalisation constants of quark bilinears in lattice QCD with four dynamical Wilson quarks
Energy Technology Data Exchange (ETDEWEB)
Blossier, Benoit [CNRS et Paris-Sud 11 Univ., Orsay (France). Lab. de Physique Theorique; Brinet, Mariane [CNRS/IN2P3/UJF, Grenoble (France). Lab. de Physique Subatomique et de Cosmologie; Carrasco, Nuria [Valencia Univ., Burjassot (ES). Dept. de Fisica Teorica and IFC] (and others)
2011-12-15
We present preliminary results of the non-perturbative computation of the RI-MOM renormalization constants in a mass-independent scheme for the action with Iwasaki glue and four dynamical Wilson quarks employed by ETMC. Our project requires dedicated gauge ensembles with four degenerate sea quark flavours at three lattice spacings and at several values of the standard and twisted quark mass parameters. The RI-MOM renormalization constants are obtained from appropriate O(a) improved estimators extrapolated to the chiral limit. (orig.)
Renormalisation constants of quark bilinears in lattice QCD with four dynamical Wilson quarks
International Nuclear Information System (INIS)
Blossier, Benoit; Brinet, Mariane; Carrasco, Nuria
2011-12-01
We present preliminary results of the non-perturbative computation of the RI-MOM renormalization constants in a mass-independent scheme for the action with Iwasaki glue and four dynamical Wilson quarks employed by ETMC. Our project requires dedicated gauge ensembles with four degenerate sea quark flavours at three lattice spacings and at several values of the standard and twisted quark mass parameters. The RI-MOM renormalization constants are obtained from appropriate O(a) improved estimators extrapolated to the chiral limit. (orig.)
International Nuclear Information System (INIS)
Rho, M.
1982-01-01
As an aid to discussing the structure of nucleons and nuclei conceptual framework, heuristic arguments are presented which indicate that a hadron can be considered as a bag consisting of two different phases. The chiral structure of the phase outside the bag is discussed in terms of effective field theories and it is shown to what extent experiments in nuclei can constrain the structure of such theories. Results thus obtained are then combined to set up a set of equations for the bag structure of u and d hadrons, incorporating asymptotic freedom in the phase inside of the bag confinement of quarks and gluons by boundary conditions and spontaneously broken chiral symmetry in the outside. This set of equations which represent a chirally invariant generalization of the M.I.T. bag model is then solved. (U.K.)
A Statistical Model for Soliton Particle Interaction in Plasmas
DEFF Research Database (Denmark)
Dysthe, K. B.; Pécseli, Hans; Truelsen, J.
1986-01-01
A statistical model for soliton-particle interaction is presented. A master equation is derived for the time evolution of the particle velocity distribution as induced by resonant interaction with Korteweg-de Vries solitons. The detailed energy balance during the interaction subsequently determines...... the evolution of the soliton amplitude distribution. The analysis applies equally well for weakly nonlinear plasma waves in a strongly magnetized waveguide, or for ion acoustic waves propagating in one-dimensional systems....
Hot nuclear matter in the modified quark-meson coupling model with quark-quark correlations
International Nuclear Information System (INIS)
Zakout, I.; Jaqaman, H.R.
2000-01-01
Short-range quark-quark correlations in hot nuclear matter are examined within the modified quark-meson coupling (MQMC) model by adding repulsive scalar and vector quark-quark interactions. Without these correlations, the bag radius increases with the baryon density. However, when the correlations are introduced the bag size shrinks as the bags overlap. Also as the strength of the scalar quark-quark correlation is increased, the decrease of the effective nucleon mass M* N with the baryonic density is slowed down and tends to saturate at high densities. Within this model we study the phase transition from the baryon-meson phase to the quark-gluon plasma (QGP) phase with the latter modelled as an ideal gas of quarks and gluons inside a bag. Two models for the QGP bag parameter are considered. In one case, the bag is taken to be medium-independent and the phase transition from the hadron phase to QGP is found to occur at five to eight times ordinary nuclear matter density for temperatures less than 60 MeV. For lower densities, the transition takes place at a higher temperature, reaching up to 130 MeV at zero density. In the second case, the QGP bag parameter is considered to be medium-dependent as in the MQMC model for the hadronic phase. In this case, it is found that the phase transition occurs at much lower densities. (author)
Two-color lattice QCD with staggered quarks
Energy Technology Data Exchange (ETDEWEB)
Scheffler, David
2015-07-20
The study of quantum chromodynamics (QCD) at finite temperature and density provides important contributions to the understanding of strong-interaction matter as it is present e.g. in nuclear matter and in neutron stars or as produced in heavy-ion collision experiments. Lattice QCD is a non-perturbative approach, where equations of motion for quarks and gluons are discretized on a finite space-time lattice. The method successfully describes the behavior of QCD in the vacuum and at finite temperature, however it cannot be applied to finite baryon density due to the fermion sign problem. Various QCD-like theories, that offer to draw conclusions about QCD, allow simulations also at finite densities. In this work we investigate two-color QCD as a popular example of a QCD-like theory free from the sign problem with methods from lattice gauge theory. For the generation of gauge configurations with two dynamical quark flavors in the staggered formalism with the ''rooting trick'' we apply the Rational Hybrid Monte Carlo (RHMC) algorithm. We carry out essential preparatory work for future simulations at finite density. As a start, we concentrate on the calculation of the effective potential for the Polyakov loop, which is an order parameter for the confinement-deconfinement transition, in dependence of the temperature and quark mass. It serves as an important input for effective models of QCD. We obtain the effective potential via the histogram method from local distributions of the Polyakov loop. To study the influence of dynamical quarks on gluonic observables, the simulations are performed with large quark masses and are compared to calculations in the pure gauge theory. In the second part of the thesis we examine aspects of the chiral phase transition along the temperature axis. The symmetry group of chiral symmetry in two-color QCD is enlarged to SU(2N{sub f}). Discretized two-color QCD in the staggered formalism exhibits a chiral symmetry breaking
International Nuclear Information System (INIS)
Rho, M.
1983-11-01
The issue as to whether or not quarks will manifest themselves explicitly in nuclear processes is discussed in the light of the recently discovered topological structure of the baryon. Due to the leakage of the baryon charge from a confinement region (bag) into a meson-cloud region, there emerges a sort of topological equivalence principle which renders physically equivalent the description in terms of Goldstone meson fields alone (the Skyrmion) and the description in terms of a bag (confining quarks) surrounded by a meson cloud (the chiral bag model). How this new structure will modify our understanding of the nucleon and the nucleus is examined
Low momentum penguin contributions in a chiral theory
International Nuclear Information System (INIS)
Eeg, J.O.
1985-11-01
It has been shown that penguin diagram contributions corresponding to u-quark loop momenta below a scale Λsub(x) approximately= 1 GeV are enhanced and could at least partly explain the ΔI=1/2 rule. Thus a previous calculation within the bag model is confirmed. The present caluculation is performed wihtin an effective chiral theory with pions and kaons coupled to quarks. It has been found that low momentum left-left loop contributions are important, while left-right contributions can be neglected
Hadron properties in chiral sigma model
International Nuclear Information System (INIS)
Shen Hong
2005-01-01
The modification of hadron masses in nuclear medium is studied by using the chiral sigma model, which is extended to generate the omega meson mass by the sigma condensation in the vacuum in the same way as the nucleon mass. The chiral sigma model provides proper equilibrium properties of nuclear matter. It is shown that the effective masses of both nucleons and omega mesons decrease in nuclear medium, while the effective mass of sigma mesons increases oat finite density in the chiral sigma model. The results obtained in the chiral sigma model are compared with those obtained in the Walecka model, which includes sigma and omega mesons in a non-chiral fashion. (author)
Chiral symmetry breaking from Ginsparg-Wilson fermions
Hernández, Pilar; Lellouch, L P; Hernandez, Pilar; Jansen, Karl; Lellouch, Laurent
2000-01-01
We calculate the large-volume and small-mass dependences of the quark condensate in quenched QCD using Neuberger's operator. We find good agreement with the predictions of quenched chiral perturbation theory, enabling a determination of the chiral lagrangian parameter \\Sigma, up to a multiplicative renormalization.
Corrections to the Banks-Casher relation with Wilson quarks
Necco, S
2013-01-01
The Banks-Casher relation links the spectral density of the Dirac operator with the existence of a chiral condensate and spontaneous breaking of chiral symmetry. This relation receives corrections from a finite value of the quark mass, a finite space-time volume and, if evaluated on a discrete lattice, from the finite value of the lattice spacing a. We present a status report of a determination of these corrections for Wilson quarks.
Strange vector form factors in the context of the SAMPLE, A4, HAPPEX and G0 experiments
Energy Technology Data Exchange (ETDEWEB)
Silva, Antonio; Kim, Hyu-Chul; Goeke, Klaus
2003-06-30
We present the recent results of the strange vector form factors of the nucleon within the framework of the SU(3) chiral quark-soliton model. We compare our results with the recent experimental data of the SAMPLE and HAPPEX collaborations and find that they are in a good agreement with the data. We also predict the future experiments of the A4, HAPPEX-II and G0 collaborations.
Strange vector form factors in the context of the SAMPLE, A4, HAPPEX and G0 experiments
International Nuclear Information System (INIS)
Silva, Antonio; Kim, Hyu-Chul; Goeke, Klaus
2003-01-01
We present the recent results of the strange vector form factors of the nucleon within the framework of the SU(3) chiral quark-soliton model. We compare our results with the recent experimental data of the SAMPLE and HAPPEX collaborations and find that they are in a good agreement with the data. We also predict the future experiments of the A4, HAPPEX-II and G0 collaborations
Quark contributions to baryon magnetic moments in full, quenched, and partially quenched QCD
International Nuclear Information System (INIS)
Leinweber, Derek B.
2004-01-01
The chiral nonanalytic behavior of quark-flavor contributions to the magnetic moments of octet baryons is determined in full, quenched and partially quenched QCD, using an intuitive and efficient diagrammatic formulation of quenched and partially quenched chiral perturbation theory. The technique provides a separation of quark-sector magnetic-moment contributions into direct sea-quark loop, valence-quark, indirect sea-quark loop and quenched valence contributions, the latter being the conventional view of the quenched approximation. Both meson and baryon mass violations of SU(3)-flavor symmetry are accounted for. Following a comprehensive examination of the individual quark-sector contributions to octet baryon magnetic moments, numerous opportunities to observe and test the underlying structure of baryons and the nature of chiral nonanalytic behavior in QCD and its quenched variants are discussed. In particular, the valence u-quark contribution to the proton magnetic moment provides the optimal opportunity to directly view nonanalytic behavior associated with the meson cloud of full QCD and the quenched meson cloud of quenched QCD. The u quark in Σ + provides the best opportunity to display the artifacts of the quenched approximation
Models of quark bags and their consequences
International Nuclear Information System (INIS)
Bogolubov, P.N.
1977-01-01
The development of the first Dubna Quark Bag and the results obtained in this way are considered. The idea of the first Dubna Quark Bag is as follows: baryons are constructed of three quarks measons are constructed of two quarks, and each quark is interpreted as the Dirac particle which moves in a scalar square well. The so-called quasiindependent quark model is considered too. It is a simple quark model based on an analogy with the shell model for nuclei. The quarks are considered as moving in an arbitrary radially-symmetric field, and their one-particle wave function satisfies the usual Dirac equation. Such quark model can give at least the same results as the relativistic bag model. A possibility exists to improve the results of the relativistic quark model with the oscillator interaction between quarks. The results of the MIT-Bag model and the quasiindependent quark model coincide
Thermodynamics of a solvable quark model inspired by the Gribov-Zwanziger theory
International Nuclear Information System (INIS)
Mintz, B.W.; Guimaraes, M.S.
2013-01-01
Full text: In an attempt to solve the problem of spurious gauge copies in the path integral approach to gauge theories, V. N. Gribov proposed in 1978 a method to restrict the integration domain of the path integral to only one gauge field representative of each physical field configuration. As a result, the quadratic part of the gluon propagator is modified in the infrared, so that it acquires complex poles, i.e., complex m asses . This implies the absence of gluons in the physical spectrum, which is a necessary condition for confinement. An analogous reasoning may be applied to quark fields coupled to the gauge fields. As a consequence, the quark propagator also gets modified in the infrared, giving rise to unphysical propagators (i.e., with complex poles) at small momenta. Such a property is understood as a sign of both quark confinement and of the breaking of chiral symmetry in the vacuum. In this work, we study the thermodynamics of this model by exactly calculating the partition function using standard methods of finite-temperature quantum field theory. We find that the infrared behavior of the quark propagator leads to a highly nontrivial pressure as a function of the temperature, which is qualitatively close to the results from lattice QCD at finite temperature. (author)
[Investigations in guage theories, topological solitons and string theories
International Nuclear Information System (INIS)
Chang, L.N.; Tze, C.H.
1989-01-01
This report discusses the following topics: Phases and conservation laws in parametrized systems; Time reversal symmetry in 2 + 1 dimemsional systems; Chiral symmetry breaking in QCD at high temperatures; Solitons at Tev energies; Self-Duality, conformal symmetries and hypercomplex analyticity; Hopf phase entanglements, exotic membranes and division algebras; and Non-perturbative methods. 58 refs
Thermodynamics of lattice QCD with 2 sextet quarks on Nt=8 lattices
International Nuclear Information System (INIS)
Kogut, J. B.; Sinclair, D. K.
2011-01-01
We continue our lattice simulations of QCD with 2 flavors of color-sextet quarks as a model for conformal or walking technicolor. A 2-loop perturbative calculation of the β function which describes the evolution of this theory's running coupling constant predicts that it has a second zero at a finite coupling. This nontrivial zero would be an infrared stable fixed point, in which case the theory with massless quarks would be a conformal field theory. However, if the interaction between quarks and antiquarks becomes strong enough that a chiral condensate forms before this IR fixed point is reached, the theory is QCD-like with spontaneously broken chiral symmetry and confinement. However, the presence of the nearby IR fixed point means that there is a range of couplings for which the running coupling evolves very slowly, i.e. it ''walks.'' We are simulating the lattice version of this theory with staggered quarks at finite temperature, studying the changes in couplings at the deconfinement and chiral-symmetry restoring transitions as the temporal extent (N t ) of the lattice, measured in lattice units, is increased. Our earlier results on lattices with N t =4, 6 show both transitions move to weaker couplings as N t increases consistent with walking behavior. In this paper we extend these calculations to N t =8. Although both transitions again move to weaker couplings, the change in the coupling at the chiral transition from N t =6 to N t =8 is appreciably smaller than that from N t =4 to N t =6. This indicates that at N t =4, 6 we are seeing strong-coupling effects and that we will need results from N t >8 to determine if the chiral-transition coupling approaches zero as N t →∞, as needed for the theory to walk.
Non-topological soliton bag model
International Nuclear Information System (INIS)
Wilets, L.
1986-01-01
The Friedberg-Lee soliton model, which effects confinement by a quantal scalar field, is discussed. The Lagrangian for the non-topological soliton model is the usual QCD Lagrangian supplemented by a non-linear scalar sigma field term. Static solutions to the field equations are considered in the mean field approximation. Small amplitude oscillations are discussed. Quantum alternatives to the mean field approximation are also considered. Methods of momentum projection and Lorentz boost are described, and the generator coordinate method is discussed. Calculations of the N-N interaction are reviewed briefly. Also discussed is one-gluon exchange, as well as the pion and dressing of the baryons. The hadron states are summarized. One loop quantum corrections are discussed briefly. Work in progress is mentioned in the areas of N-anti N annihilation, the many bag problem, and a Pauli equation for the nucleon. 31 refs
Quark-diquark approximation of the three-quark structure of baryons in the quark confinement model
International Nuclear Information System (INIS)
Efimov, G.V.; Ivanov, M.A.; Lyubovitskij, V.E.
1990-01-01
Octet (1 + /2) and decuplet (3 + /2) of baryons as relativistic three-quark states are investigated in the quark confinement model (QCM), the relativistic quark model, based on some assumptions about hadronization and quark confinement. The quark-diquark approximation of the three-quark structure of baryons is proposed. In the framework of this approach the description of the main low-energy characteristics of baryons as magnetic moments, electromagnetic radii and form factors, ratio of axial and vector constants in semileptonic baryon octet decays, strong form factors and decay widths is given. The obtained results are in agreement with experimental data. 31 refs.; 4 figs.; 5 tabs
Spin content of constituent quarks and one-spin asymmetries in inclusive processes
International Nuclear Information System (INIS)
Troshin, S.M.; Tyurin, N.E.
1995-01-01
A mechanism for one-spin asymmetries observed in inclusive hadron production is considered. The main role belongs to the orbital angular momentum of the quark-antiquark cloud in the internal structure of constituent quarks. The origin of the asymmetries in pion production is a result of retaining this internal angular orbital momentum by the perturbative phase of QCD under transition from the non-perturbative phase is proved. The non-perturbative hadron structure is based on the results of chiral quark models. 33 refs.; 8 figs
Quark condensation, induced symmetry breaking and color superconductivity at high density
International Nuclear Information System (INIS)
Langfeld, Kurt; Rho, Mannque
1999-01-01
The phase structure of hadronic matter at high density relevant to the physics of compact stars and relativistic heavy-ion collisions is studied in a low-energy effective quark theory. The relevant phases that figure are (1) chiral condensation, (2) diquark color condensation (color superconductivity) and (3) induced Lorentz-symmetry breaking (''ISB''). For a reasonable strength for the effective four-Fermi current-current interaction implied by the low-energy effective quark theory for systems with a Fermi surface we find that the ''ISB'' phase sets in together with chiral symmetry restoration (with the vanishing quark condensate) at a moderate density while color superconductivity associated with scalar diquark condensation is pushed up to an asymptotic density. Consequently, color superconductivity seems rather unlikely in heavy-ion collisions although it may play a role in compact stars. Lack of confinement in the model makes the result of this analysis only qualitative but the hierarchy of the transitions we find seems to be quite robust
Chiral thermodynamics of nuclear matter
International Nuclear Information System (INIS)
Fiorilla, Salvatore
2012-01-01
The equation of state of nuclear matter is calculated at finite temperature in the framework of in-medium chiral perturbation theory up to three-loop order. The dependence of its thermodynamic properties on the isospin-asymmetry is investigated. The chiral quark condensate is evaluated for symmetric nuclear matter. Its behaviour as a function of density and temperature sets important nuclear physics constraints for the QCD phase diagram.
Chiral thermodynamics of nuclear matter
Energy Technology Data Exchange (ETDEWEB)
Fiorilla, Salvatore
2012-10-23
The equation of state of nuclear matter is calculated at finite temperature in the framework of in-medium chiral perturbation theory up to three-loop order. The dependence of its thermodynamic properties on the isospin-asymmetry is investigated. The chiral quark condensate is evaluated for symmetric nuclear matter. Its behaviour as a function of density and temperature sets important nuclear physics constraints for the QCD phase diagram.
Instanton vacuum at finite density of quark matter
International Nuclear Information System (INIS)
Molodtsov, S.V.; Zinovjev, G.M.
2002-01-01
We study light quark interactions in the instanton liquid at finite quark/baryon number density analyzing chiral and diquark condensates and investigate the behaviors of quark dynamical mass and both condensates together with instanton liquid density as a function of quark chemical potential. We conclude the quark impact (estimated in the tadpole approximation) on the instanton liquid could shift color superconducting phase transition to higher values of the chemical potential bringing critical quark matter density to the values essentially higher than conventional nuclear one
Elastic pion-nucleon P-wave scattering in soliton models
International Nuclear Information System (INIS)
Holzwarth, G.
1990-01-01
The equivalence of low-energy P-wave πN scattering in soliton models with the well-established Δ-isobar model is shown to hold even if all constraints on redundant collective variables are ignored. This provides strong support for the unusual (time-derivative) form of meson-baryon coupling in such models, and for the expectation that the soliton description of πN-scattering can be reliably extended down to pion threshold energies in a technically simple way. (orig.)
Chiral phase transition of QCD with N{sub f}=2+1 flavors from holography
Energy Technology Data Exchange (ETDEWEB)
Li, Danning [Department of Physics, Jinan University,Guangzhou 510632 (China); Huang, Mei [Institute of High Energy Physics, Chinese Academy of Sciences,Beijing 100049 (China); University of Chinese Academy of Sciences,Beijing 100049 (China); Theoretical Physics Center for Science Facilities, Chinese Academy of Sciences,Beijing 100049 (China)
2017-02-08
Chiral phase transition for three-flavor N{sub f}=2+1 QCD with m{sub u}=m{sub d}≠m{sub s} is investigated in a modified soft-wall holographic QCD model. Solving temperature dependent chiral condensates from equations of motion of the modified soft-wall model, we extract the quark mass dependence of the order of chiral phase transition in the case of N{sub f}=2+1, and the result is in agreement with the “Columbia Plot”, which is summarized from lattice simulations and other non-perturbative methods. First order phase transition is observed around the three flavor chiral limit m{sub u/d}=0,m{sub s}=0, while at sufficient large quark masses it turns to be a crossover phase transition. The first order and crossover regions are separated by a second order phase transition line. The second order line is divided into two parts by the m{sub u/d}=m{sub s} line, and the m{sub s} dependence of the transition temperature in these two parts are totally contrast, which might indicate that the two parts are governed by different universality classes.
International Nuclear Information System (INIS)
Sharpe, S.R.
1992-04-01
I develop a diagrammatic method for calculating chiral logarithms in the quenched approximation. While not rigorous, the method is based on physically reasonable assumptions, which can be tested by numerical simulations. The main results are that, at leading order in the chiral expansion, (a) there are no chiral logarithms in quenched f π m u = m d ; (b) the chiral logarithms in B K and related kaon B-parameters are, for m d = m s the same in the quenched approximation as in the full theory (c) for m π and the condensate, there are extra chiral logarithms due to loops containing the η', which lead to a peculiar non-analytic dependence of these quantities on the bare quark mass. Following the work of Gasser and Leutwyler, I discuss how there is a predictable finite volume dependence associated with each chiral logarithm. I compare the resulting predictions with numerical results: for most quantities the expected volume dependence is smaller than the errors. but for B V and B A there is an observed dependence which is consistent with the predictions
Anomalous quark and gluon contents of light hadrons
Energy Technology Data Exchange (ETDEWEB)
Hatsuda, T. (Washington Univ., Seattle, WA (United States). Inst. for Nuclear Theory); Kunihiro, T. (Ryukoku Univ., Otsu-City (Japan). Faculty of Science and Technology)
1992-09-14
The sea-quark contents such as anti ss, anti cc, anti bb... of the low-lying baryons in the octet and decuplet are calculated with a combined use of the trace anomaly of QCD and a chiral quark model. We find (i) the empirical value of the [pi]-N sigma term ([proportional to] 45 MeV) can be reproduced with a rather small anti ss content of nucleon consistently with the Gell-Mann-Okubo mass formula, (ii) the probability to find a charm quark in nucleon is found to be 0.5% which is consistent with the experimental analysis of the charm structure function of the proton and is necessary to account for the J/[psi]-production in proton-nucleous collisions and (iii) both strange and heavy quarks are equally important for the Higgs-nucleon coupling. The heavy-quark and gluon contents of pion and kaon are briefly mentioned. (orig.).
Timoshenko beam model for chiral materials
Ma, T. Y.; Wang, Y. N.; Yuan, L.; Wang, J. S.; Qin, Q. H.
2018-06-01
Natural and artificial chiral materials such as deoxyribonucleic acid (DNA), chromatin fibers, flagellar filaments, chiral nanotubes, and chiral lattice materials widely exist. Due to the chirality of intricately helical or twisted microstructures, such materials hold great promise for use in diverse applications in smart sensors and actuators, force probes in biomedical engineering, structural elements for absorption of microwaves and elastic waves, etc. In this paper, a Timoshenko beam model for chiral materials is developed based on noncentrosymmetric micropolar elasticity theory. The governing equations and boundary conditions for a chiral beam problem are derived using the variational method and Hamilton's principle. The static bending and free vibration problem of a chiral beam are investigated using the proposed model. It is found that chirality can significantly affect the mechanical behavior of beams, making materials more flexible compared with nonchiral counterparts, inducing coupled twisting deformation, relatively larger deflection, and lower natural frequency. This study is helpful not only for understanding the mechanical behavior of chiral materials such as DNA and chromatin fibers and characterizing their mechanical properties, but also for the design of hierarchically structured chiral materials.
Chiral crossover transition in a finite volume
Shi, Chao; Jia, Wenbao; Sun, An; Zhang, Liping; Zong, Hongshi
2018-02-01
Finite volume effects on the chiral crossover transition of strong interactions at finite temperature are studied by solving the quark gap equation within a cubic volume of finite size L. With the anti-periodic boundary condition, our calculation shows the chiral quark condensate, which characterizes the strength of dynamical chiral symmetry breaking, decreases as L decreases below 2.5 fm. We further study the finite volume effects on the pseudo-transition temperature {T}{{c}} of the crossover, showing a significant decrease in {T}{{c}} as L decreases below 3 fm. Supported by National Natural Science Foundation of China (11475085, 11535005, 11690030, 51405027), the Fundamental Research Funds for the Central Universities (020414380074), China Postdoctoral Science Foundation (2016M591808) and Open Research Foundation of State Key Lab. of Digital Manufacturing Equipment & Technology in Huazhong University of Science & Technology (DMETKF2015015)
Supersymmetry and the chiral Schwinger model
International Nuclear Information System (INIS)
Amorim, R.; Das, A.
1998-01-01
We have constructed the N= (1) /(2) supersymmetric general Abelian model with asymmetric chiral couplings. This leads to a N= (1) /(2) supersymmetrization of the Schwinger model. We show that the supersymmetric general model is plagued with problems of infrared divergence. Only the supersymmetric chiral Schwinger model is free from such problems and is dynamically equivalent to the chiral Schwinger model because of the peculiar structure of the N= (1) /(2) multiplets. copyright 1998 The American Physical Society
Nucleon quark distributions in a covariant quark-diquark model
Energy Technology Data Exchange (ETDEWEB)
Cloet, I.C. [Special Research Centre for the Subatomic Structure of Matter and Department of Physics and Mathematical Physics, University of Adelaide, SA 5005 (Australia) and Jefferson Lab, 12000 Jefferson Avenue, Newport News, VA 23606 (United States)]. E-mail: icloet@physics.adelaide.edu.au; Bentz, W. [Department of Physics, School of Science, Tokai University, Hiratsuka-shi, Kanagawa 259-1292 (Japan)]. E-mail: bentz@keyaki.cc.u-tokai.ac.jp; Thomas, A.W. [Jefferson Lab, 12000 Jefferson Avenue, Newport News, VA 23606 (United States)]. E-mail: awthomas@jlab.org
2005-08-18
Spin-dependent and spin-independent quark light-cone momentum distributions and structure functions are calculated for the nucleon. We utilize a modified Nambu-Jona-Lasinio model in which confinement is simulated by eliminating unphysical thresholds for nucleon decay into quarks. The nucleon bound state is obtained by solving the Faddeev equation in the quark-diquark approximation, where both scalar and axial-vector diquark channels are included. We find excellent agreement between our model results and empirical data.
The Skyrmions and quarks in nuclei
International Nuclear Information System (INIS)
Rho, M.
1984-08-01
It is proposed that the quark-bag description and the Skyrmion description of baryons are related to each other by quantized parameters. Topology (through a chiral anomaly) plays an important role in bridging the fundamental theory of the strong interactions (QCD) to effective theories. Some consequences on the efforts to see quark degrees of freedom in nuclear matter are discussed. It is suggested that at low energies there will be no ''smoking gun'' evidences for quark presence in nuclei
Description of a nucleon in nuclear matter using the chiral bag model
International Nuclear Information System (INIS)
Bunatyan, G.G.
1990-01-01
The chiral bag (cloudy bag) model, which contains an essentially nonlinear interaction of quarks with both the classical and quantum pion field, is extended for description of a nucleon in nuclear matter. The dependence on the density and temperature of the medium is studied. The pion field in nuclear matter differs considerably from the free field, and this leads to a modification of the nucleon bag. Increase of the density ρ and temperature T causes strengthening of the pion field and growth of its thermodynamic fluctuations. At sufficiently high densities ρ approx-gt ρ CB and temperatures T≥T cr this leads to instability of the three-quark nucleon bag. Under such conditions nuclear matter cannot be composed only of nucleons, and one should expect the appearance of a different, non-nucleon, phase. Estimates of the critical density and temperature are obtained: ρ CB ∼ (1.5-2)ρ 0 and T cr ∼ 200 MeV (where ρ 0 is the conventional nuclear density)
Top quark and Higgs physics in standard model extensions
Energy Technology Data Exchange (ETDEWEB)
Gonzalez, Patrick Jose
2012-05-25
In this thesis we have studied several extensions of the SM and their implications on the strength and structure of the tbW vertex, on the production and decays of pseudoscalar and heavy Higgs scalars at the LHC, and the effects that models with a fourth generation have on electroweak precision observables. Apart from the SM with a fourth generation of chiral fermions, the extensions we studied all feature an extended electroweak symmetry breaking (EWSB) sector. In the case of the type-II 2HDM and the MSSM, the extended EWSB sector consists of elementary Higgs fields. In the case of Topcolor assisted Technicolor (TC2), which is a model of dynamical EWSB, the scalar and pseudoscalar fields are composite. By scanning over the phenomenologically and theoretically allowed regions of the respective parameters spaces, we determined the largest possible cross sections σ(pp→φ→VV{sup '}) where VV{sup p}rime element of {W"+W"-, ZZγγ, Zγ} for both the heavy scalar and pseudoscalar states in the above models. We found that non-SUSY models with an extended Higgs sector and only three generations, namely the type-II 2HDM and the TC2, still allow for observable pseudoscalar cross sections σ(pp → A → VV') at the LHC. In particular for the final states W{sup +}W{sup -} and γγ. In the MSSM, the discovery of the pseudoscalar A through its decays into electroweak gauge bosons is very unlikely. However, scalar cross sections σ(pp→H→W{sup +}W{sup -}) can still be of observable size at the LHC in large parts of the MSSM parameter space. SM extensions with an extended EWSB sector and four chiral generations are strongly disfavoured; direct Higgs boson searches exclude large parts of the parameter space and it is challenging to bring such an extension into accordance with electroweak precision data. On the other hand, models with additional vector-like quarks and an extended Higgs sector are still viable. The SM with four chiral generations is (still) not
On the overlap formulation of chiral gauge theory
International Nuclear Information System (INIS)
Randjbar Daemi, S.; Strathdee, J.
1994-12-01
The overlap formula proposed by Narayanan and Neuberger in chiral gauge theories is examined. The free chiral and Dirac Green's functions are constructed in this formalism. Four dimensional anomalies are calculated and the usual anomaly cancellation for one standard family of quarks and leptons is verified. (author). 4 refs
Induced mitochondrial membrane potential for modeling solitonic conduction of electrotonic signals.
Directory of Open Access Journals (Sweden)
R R Poznanski
Full Text Available A cable model that includes polarization-induced capacitive current is derived for modeling the solitonic conduction of electrotonic potentials in neuronal branchlets with microstructure containing endoplasmic membranes. A solution of the nonlinear cable equation modified for fissured intracellular medium with a source term representing charge 'soakage' is used to show how intracellular capacitive effects of bound electrical charges within mitochondrial membranes can influence electrotonic signals expressed as solitary waves. The elastic collision resulting from a head-on collision of two solitary waves results in localized and non-dispersing electrical solitons created by the nonlinearity of the source term. It has been shown that solitons in neurons with mitochondrial membrane and quasi-electrostatic interactions of charges held by the microstructure (i.e., charge 'soakage' have a slower velocity of propagation compared with solitons in neurons with microstructure, but without endoplasmic membranes. When the equilibrium potential is a small deviation from rest, the nonohmic conductance acts as a leaky channel and the solitons are small compared when the equilibrium potential is large and the outer mitochondrial membrane acts as an amplifier, boosting the amplitude of the endogenously generated solitons. These findings demonstrate a functional role of quasi-electrostatic interactions of bound electrical charges held by microstructure for sustaining solitons with robust self-regulation in their amplitude through changes in the mitochondrial membrane equilibrium potential. The implication of our results indicate that a phenomenological description of ionic current can be successfully modeled with displacement current in Maxwell's equations as a conduction process involving quasi-electrostatic interactions without the inclusion of diffusive current. This is the first study in which solitonic conduction of electrotonic potentials are generated by
Matrix elements of Δ B =0 operators in heavy hadron chiral perturbation theory
Lee, Jong-Wan
2015-05-01
We study the light-quark mass and spatial volume dependence of the matrix elements of Δ B =0 four-quark operators relevant for the determination of Vu b and the lifetime ratios of single-b hadrons. To this end, one-loop diagrams are computed in the framework of heavy hadron chiral perturbation theory with partially quenched formalism for three light-quark flavors in the isospin limit; flavor-connected and -disconnected diagrams are carefully analyzed. These calculations include the leading light-quark flavor and heavy-quark spin symmetry breaking effects in the heavy hadron spectrum. Our results can be used in the chiral extrapolation of lattice calculations of the matrix elements to the physical light-quark masses and to infinite volume. To provide insight on such chiral extrapolation, we evaluate the one-loop contributions to the matrix elements containing external Bd, Bs mesons and Λb baryon in the QCD limit, where sea and valence quark masses become equal. In particular, we find that the matrix elements of the λ3 flavor-octet operators with an external Bd meson receive the contributions solely from connected diagrams in which current lattice techniques are capable of precise determination of the matrix elements. Finite volume effects are at most a few percent for typical lattice sizes and pion masses.
Quark models in hadron physics
International Nuclear Information System (INIS)
Phatak, Shashikant C.
2007-01-01
In this talk, we review the role played by the quark models in the study of interaction of strong, weak and electromagnetic probes with hadrons at intermediate and high momentum transfers. By hadrons, we mean individual nucleons as well as nuclei. We argue that at these momentum transfers, the structure of hadrons plays an important role. The hadron structure of the hadrons is because of the underlying quark structure of hadrons and therefore the quark models play an important role in determining the hadron structure. Further, the properties of hadrons are likely to change when these are placed in nuclear medium and this change should arise from the underlying quark structure. We shall consider some quark models to look into these aspects. (author)
Chiral condensate from the twisted mass Dirac operator spectrum
International Nuclear Information System (INIS)
Cichy, Krzysztof; Jansen, Karl; Cyprus Univ., Nicosia
2013-03-01
We present the results of our computation of the chiral condensate with N f =2 and N f =2+1+1 flavours of maximally twisted mass fermions. The condensate is determined from the Dirac operator spectrum, applying the spectral projector method proposed by Giusti and Luescher. We use 3 lattice spacings and several quark masses at each lattice spacing to reliably perform the chiral and continuum extrapolations. We study the effect of the dynamical strange and charm quarks by comparing our results for N f =2 and N f =2+1+1 dynamical flavours.
Tomiya, Akio; Ding, Heng-Tong; Mukherjee, Swagato; Schmidt, Christian; Wang, Xiao-Dan
2018-03-01
Lattice simulations for (2+1)-flavor QCD with external magnetic field demon-strated that the quark mass is one of the important parameters responsible for the (inverse) magnetic catalysis. We discuss the dependences of chiral condensates and susceptibilities, the Polyakov loop on the magnetic field and quark mass in three degenerate flavor QCD. The lattice simulations are performed using standard staggered fermions and the plaquette action with spatial sizes Nσ = 16 and 24 and a fixed temporal size Nτ = 4. The value of the quark masses are chosen such that the system undergoes a first order chiral phase transition and crossover with zero magnetic field. We find that in light mass regime, the quark chiral condensate undergoes magnetic catalysis in the whole temperature region and the phase transition tend to become stronger as the magnetic field increases. In crossover regime, deconfinement transition temperature is shifted by the magnetic field when quark mass ma is less than 0:4. The lattice cutoff effects are also discussed.
Quark matter and quark stars at finite temperature in Nambu-Jona-Lasinio model
Energy Technology Data Exchange (ETDEWEB)
Chu, Peng-Cheng; Wang, Bin; Dong, Yu-Min; Jia, Yu-Yue; Wang, Shu-Mei; Ma, Hong-Yang [Qingdao Technological University, School of Science, Qingdao (China); Li, Xiao-Hua [University of South China, School of Nuclear Science and Technology, Hengyang (China); University of South China, Cooperative Innovation Center for Nuclear Fuel Cycle Technology and Equipment, Hengyang (China)
2017-08-15
We extend the SU(3) Nambu-Jona-Lasinio (NJL) model to include two types of vector interaction. Using these two types of vector interaction in NJL model, we study the quark symmetry free energy in asymmetric quark matter, the constituent quark mass, the quark fraction, the equation of state (EOS) for β-equilibrium quark matter, the maximum mass of QSs at finite temperature, the maximum mass of proto-quark stars (PQSs) along the star evolution, and the effects of the vector interaction on the QCD phase diagram. We find that comparing zero temperature case, the values of quark matter symmetry free energy get larger with temperature increasing, which will reduce the difference between the fraction of u, d and s quarks and stiffen the EoS for β-equilibrium quark matter. In particular, our results indicate that the maximum masses of the quark stars increase with temperature because of the effects of the quark matter symmetry free energy, and we find that the heating(cooling) process for PQSs will increase (decrease) the maximum mass within NJL model. (orig.)
Hadron matrix elements of quark operators in the relativistic quark model, 2. Model calculation
Energy Technology Data Exchange (ETDEWEB)
Arisue, H; Bando, M; Toya, M [Kyoto Univ. (Japan). Dept. of Physics; Sugimoto, H
1979-11-01
Phenomenological studies of the matrix elements of two- and four-quark operators are made on the basis of relativistic independent quark model for typical three cases of the potentials: rigid wall, linearly rising and Coulomb-like potentials. The values of the matrix elements of two-quark operators are relatively well reproduced in each case, but those of four-quark operators prove to be too small in the independent particle treatment. It is suggested that the short-range two-quark correlations must be taken into account in order to improve the values of the matrix elements of the four-quark operators.
Simulating at realistic quark masses. Light quark masses
International Nuclear Information System (INIS)
Goeckeler, M.; Streuer, T.
2006-11-01
We present new results for light quark masses. The calculations are performed using two flavours of O(a) improved Wilson fermions. We have reached lattice spacings as small as a ∝0.07 fm and pion masses down to m π ∝340 MeV in our simulations. This gives us significantly better control on the chiral and continuum extrapolations. (orig.)
1/Nc expansion of the quark condensate at finite temperature
International Nuclear Information System (INIS)
Blaschke, D.; Kalinovsky, Y.L.; Roepke, G.; Schmidt, S.; Volkov, M.K.
1996-01-01
Previously the quark and meson properties in a many quark system at finite temperature have been studied within effective QCD approaches in the Hartree approximation. In the present paper we consider the influence of the mesonic correlations on the quark self-energy and on the quark propagator within a systematic 1/N c expansion. Using a general separable ansatz for the nonlocal interaction, we derive a self-consistent equation for the 1/N c correction to the quark propagator. For a separable model with cutoff form factor, we obtain a decrease of the condensate of the order of 20% at zero temperature. A lowering of the critical temperature for the onset of the chiral restoration transition due to the inclusion of mesonic correlations is obtained with results that seem to be closer to those from lattice calculations. copyright 1996 The American Physical Society
Chiral properties of non-exotic processes in K-meson physics
International Nuclear Information System (INIS)
Ivanov, A.N.; Nagy, M.; Troitskaya, N.I.
1992-01-01
The first order corrections in current quark mass expansion are evaluated for the πK-scattering and K 13 -decay amplitudes within Chiral perturbation theory at the quark level. The Ademollo-Gato theorem is discussed in this paper
Test of quark fragmentation in the quark-parton model framework
International Nuclear Information System (INIS)
Derrick, M.; Barish, S.J.; Barnes, V.E.
1979-08-01
The hadronic system produced in charged-current antineutrino interactions is used to study fragmentation of the d-quark. Some problems encountered in separating the current quark-fragments are discussed. The fragmentation function for the current quark is in good agreement with the expectations of the naive quark-parton model and, in particular, there is no evidence of either a Q 2 - or x/sub BJ/-dependence. 10 references
Lattice-QCD based Schwinger-Dyson approach for Chiral phase transition
International Nuclear Information System (INIS)
Iida, Hideaki; Oka, Makoto; Suganuma, Hideo
2005-01-01
Dynamical chiral-symmetry breaking in QCD is studied with the Schwinger-Dyson (SD) formalism based on lattice QCD data, i.e., LQCD-based SD formalism. We extract the SD kernel function K(p 2 ) in an Ansatzindependent manner from the lattice data of the quark propagator in the Landau gauge. As remarkable features, we find infrared vanishing and intermediate enhancement of the SD kernel function K(p 2 ). We apply the LQCD-based SD equation to thermal QCD with the quark chemical potential μ q . We find chiral symmetry restoration at T c ∼100MeV for μ q =0. The real part of the quark mass function decreases as T and μ q . At finite density, there appears the imaginary part of the quark mass function, which would lead to the width broadening of hadrons
Baryons in the unquenched quark model
Energy Technology Data Exchange (ETDEWEB)
Bijker, R.; Díaz-Gómez, S. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, AP 70-543, 04510 Mexico DF (Mexico); Lopez-Ruiz, M. A. [Physics Department and Center for Exploration of Energy and Matter, Indiana University, Bloomington, IN 47408 (United States); Santopinto, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Genova, via Dodecaneso 33, I-16146 Italy (Italy)
2016-07-07
In this contribution, we present the unquenched quark model as an extension of the constituent quark model that includes the effects of sea quarks via a {sup 3}P{sub 0} quark-antiquark pair-creation mechanism. Particular attention is paid to the spin and flavor content of the proton, magnetic moments and β decays of octet baryons.
Energy Technology Data Exchange (ETDEWEB)
Kanki, T [Osaka Univ., Toyonaka (Japan). Coll. of General Education
1976-12-01
We present a quark-gluon-parton model in which quark-partons and gluons make clusters corresponding to two or three constituent quarks (or anti-quarks) in the meson or in the baryon, respectively. We explicitly construct the constituent quark state (cluster), by employing the Kuti-Weisskopf theory and by requiring the scaling. The quark additivity of the hadronic total cross sections and the quark counting rules on the threshold powers of various distributions are satisfied. For small x (Feynman fraction), it is shown that the constituent quarks and quark-partons have quite different probability distributions. We apply our model to hadron-hadron inclusive reactions, and clarify that the fragmentation and the diffractive processes relate to the constituent quark distributions, while the processes in or near the central region are controlled by the quark-partons. Our model gives the reasonable interpretation for the experimental data and much improves the usual ''constituent interchange model'' result near and in the central region (x asymptotically equals x sub(T) asymptotically equals 0).
Soliton excitations in a class of nonlinear field theory models
International Nuclear Information System (INIS)
Makhan'kov, V.G.; Fedyanin, V.K.
1985-01-01
Investigation results of nonlinear models of the field theory with a lagrangian are described. The theory includes models both with zero stable vacuum epsilon=1 and with condensate epsilon=-1 (of disturbed symmetry). Conditions of existence of particle-like solutions (PLS), stability of these solutions are investigated. Soliton dynamics is studied. PLS formfactors are calculated. Statistical mechanics of solitons is built and their dynamic structure factors are calculated
XQCAT eXtra Quark Combined Analysis Tool
Barducci, D; Buchkremer, M; Marrouche, J; Moretti, S; Panizzi, L
2015-01-01
XQCAT (eXtra Quark Combined Analysis Tool) is a tool aimed to determine exclusion Confidence Levels (eCLs) for scenarios of new physics characterised by the presence of one or multiple heavy extra quarks (XQ) which interact through Yukawa couplings with any of the Standard Model (SM) quarks. The code uses a database of efficiencies for pre-simulated processes of Quantum Chromo-Dynamics (QCD) pair production and on-shell decays of extra quarks. In the version 1.0 of XQCAT the efficiencies have been computed for a set of seven publicly available search results by the CMS experiment, and the package is subject to future updates to include further searches by both ATLAS and CMS collaborations. The input for the code is a text file in which masses, branching ratios (BRs) and dominant chirality of the couplings of the new quarks are provided. The output of the code is the eCL of the test point for each implemented experimental analysis considered individually and, when possible, in statistical combination.
The paradigm of Pseudodual Chiral Models
International Nuclear Information System (INIS)
Zachos, C.K.; Curtright, T.L.
1994-01-01
This is a synopsis and extension of Phys. Rev. D49 5408 (1994). The Pseudodual Chiral Model illustrates 2-dimensional field theories which possess an infinite number of conservation laws but also allow particle production, at variance with naive expectations-a folk theorem of integrable models. We monitor the symmetries of the pseudodual model, both local and nonlocal, as transmutations of the symmetries of the (very different) usual Chiral Model. We refine the conventional algorithm to more efficiently produce the nonlocal symmetries of the model. We further find the canonical transformation which connects the usual chiral model to its fully equivalent dual model, thus contradistinguishing the pseudodual theory
Soliton Compton Mass from Auto-Parametric Wave-Soliton Coupling
Binder, B
2002-01-01
In this paper a self-excited Rayleigh-type system models the auto-parametric wave-soliton coupling via phase fluctuations. The parameter of dissipative terms determine not only the most likely quantum coupling between solitons and linear waves but also the most likely mass of the solitons. Phase fluctuations are mediated by virtual photons coupling at light-velocity in a permanent Compton scattering process. With a reference to the SI-units and proper scaling relations in length and velocity, the final result shows a highly interesting sequence: the likely soliton Compton mass is about 1.00138 times the neutron and 1.00276 times the proton mass.
Chiral symmetry breaking in a semilocalized magnetic field
Cao, Gaoqing
2018-03-01
In this work, we explore the pattern of chiral symmetry breaking and restoration in a solvable magnetic field configuration within the Nambu-Jona-Lasinio model. The special semilocalized static magnetic field can roughly mimic the realistic situation in peripheral heavy ion collisions; thus, the study is important for the dynamical evolution of quark matter. We find that the magnetic-field-dependent contribution from discrete spectra usually dominates over the contribution from continuum spectra and chiral symmetry breaking is locally catalyzed by both the magnitude and scale of the magnetic field. The study is finally extended to the case with finite temperature or chemical potential.
Rational solitons in the parity-time-symmetric nonlocal nonlinear Schrödinger model
International Nuclear Information System (INIS)
Li Min; Xu Tao; Meng Dexin
2016-01-01
In this paper, via the generalized Darboux transformation, rational soliton solutions are derived for the parity-time-symmetric nonlocal nonlinear Schrödinger (NLS) model with the defocusing-type nonlinearity. We find that the first-order solution can exhibit the elastic interactions of rational antidark-antidark, dark-antidark, and antidark-dark soliton pairs on a continuous wave background, but there is no phase shift for the interacting solitons. Also, we discuss the degenerate case in which only one rational dark or antidark soliton survives. Moreover, we reveal that the second-order rational solution displays the interactions between two solitons with combined-peak-valley structures in the near-field regions, but each interacting soliton vanishes or evolves into a rational dark or antidark soliton as |z| → ∞. In addition, we numerically examine the stability of the first- and second-order rational soliton solutions. (author)
Lattice analysis of SU(2) chromodynamics with light quarks
International Nuclear Information System (INIS)
Laermann, E.
1986-01-01
I report on the Monte-Carlo simulation of a SU(2) lattice gauge theory which includes dynamical Kogut-Susskind quarks. On a 16*8 3 lattice the masses of ρ and π mesons are studied, the condensate measuring the chiral symmetry breaking determined, and the potential between static quarks measured. Extrapolations to vanishing quark mass yield a finite ρ mass but a value for the π mass which is compatible with zero, as well as a result different from zero for the quark condensate in accordance with the spontaneous breaking of the chiral symmetry of massless non-Abelian gauge theories. The shape of the q-anti q potential equals the pure gauge potential for small to intermediate distances. However at large distances (σ(fm)) deviations from the linear increase are indicated as they are expected due to the breakup of the flux tube between heavy quarks because of spontaneous quark-pair production. For all numerical calculations it is common that they favor a value for the scale parameter Λsub(anti Manti S)(N F =4) of quantum chromodynamics which is smaller than in the pure gauge field theory. (orig.) [de
International Nuclear Information System (INIS)
Hasenfratz, P.; Kuti, J.
1978-01-01
The quark bag model is reviewed here with particular emphasis on spectroscopic applications and the discussion of exotic objects as baryonium, gluonium, and the quark phase of matter. The physical vacuum is pictured in the model as a two-phase medium. In normal phase of the vacuum, outside hadrons, the propagation of quark and gluon fields is forbidden. When small bubbles in a second phase are created in the medium of the normal phase with a characteristic size of one fermi, the hadron constituent fields may propagate inside the bubbles in normal manner. The bubble (bag) is stabilized against the pressure of the confined hadron constituent fields by vacuum pressure and surface tension. Inside the bag the colored quarks and gluons are governed by the equations of quantum chromodynamics. (Auth.)
The chiral phase transition for two-flavour QCD at imaginary and zero chemical potential
Bonati, Claudio; de Forcrand, Philippe; Philipsen, Owe; Sanfillippo, Francesco
2013-01-01
The chiral symmetry of QCD with two massless quark flavours gets restored in a non-analytic chiral phase transition at finite temperature and zero density. Whether this is a first-order or a second-order transition has not yet been determined unambiguously, due to the difficulties of simulating light quarks. We investigate the nature of the chiral transition as a function of quark mass and imaginary chemical potential, using staggered fermions on N_t=4 lattices. At sufficiently large imaginary chemical potential, a clear signal for a first-order transition is obtained for small masses, which weakens with decreasing imaginary chemical potential. The second-order critical line m_c(mu_i), which marks the boundary between first-order and crossover behaviour, extrapolates to a finite m_c(mu_i=0) with known critical exponents. This implies a definitely first-order transition in the chiral limit on relatively coarse, N_t=4 lattices.
Chiral condensate from the twisted mass Dirac operator spectrum
Energy Technology Data Exchange (ETDEWEB)
Cichy, Krzysztof [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Poznan Univ. (Poland). Faculty of Physics; Garcia-Ramos, Elena [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Universitaet, Berlin (Germany); Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Collaboration: European Twisted Mass Collaboration
2013-03-15
We present the results of our computation of the chiral condensate with N{sub f}=2 and N{sub f}=2+1+1 flavours of maximally twisted mass fermions. The condensate is determined from the Dirac operator spectrum, applying the spectral projector method proposed by Giusti and Luescher. We use 3 lattice spacings and several quark masses at each lattice spacing to reliably perform the chiral and continuum extrapolations. We study the effect of the dynamical strange and charm quarks by comparing our results for N{sub f}=2 and N{sub f}=2+1+1 dynamical flavours.
Transversity quark distributions in a covariant quark-diquark model
Energy Technology Data Exchange (ETDEWEB)
Cloet, I.C. [Physics Division, Argonne National Laboratory, Argonne, IL 60439-4843 (United States)], E-mail: icloet@anl.gov; Bentz, W. [Department of Physics, School of Science, Tokai University, Hiratsuka-shi, Kanagawa 259-1292 (Japan)], E-mail: bentz@keyaki.cc.u-tokai.ac.jp; Thomas, A.W. [Jefferson Lab, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); College of William and Mary, Williamsburg, VA 23187 (United States)], E-mail: awthomas@jlab.org
2008-01-17
Transversity quark light-cone momentum distributions are calculated for the nucleon. We utilize a modified Nambu-Jona-Lasinio model in which confinement is simulated by eliminating unphysical thresholds for nucleon decay into quarks. The nucleon bound state is obtained by solving the relativistic Faddeev equation in the quark-diquark approximation, where both scalar and axial-vector diquark channels are included. Particular attention is paid to comparing our results with the recent experimental extraction of the transversity distributions by Anselmino et al. We also compare our transversity results with earlier spin-independent and helicity quark distributions calculated in the same approach.
Eleven lectures on the physics of the quark-gluon plasma
International Nuclear Information System (INIS)
McLerran, L.
1984-10-01
These lectures are intended to be an introduction to the physics of the quark-gluon plasma, and were presented at a workshop on The Physics of the Quark-Gluon Plasma held at Hua-Zhong Normal University in Wuhan, People's Republic of China in September, 1983. The lectures cover perturbation theory of the plasma at high temperature as well as the non-perturbative methods and results of lattice gauge theory computations. Physical models of the confinement-deconfinement phase transition and the modes of chiral symmetry breaking are presented. The possibility that a quark-gluon plasma might be produced in ultra-relativistic nuclear collisions is analyzed. Separate entries were prepared for the data base for the eleven lectures
Simulating at realistic quark masses. Light quark masses
Energy Technology Data Exchange (ETDEWEB)
Goeckeler, M. [Regensburg Univ. (Germany). Inst. fuer Physik 1 - Theoretische Physik; Horsley, R.; Zanotti, J.M. [Edinburgh Univ. (United Kingdom). School of Physics; Nakamura, Y.; Pleiter, D. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Dept. of Mathematical Sciences; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC]|[Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Streuer, T. [Kentucky Univ., Lexington, KY (United States). Dept. of Physics and Astronomy; Stueben, H. [Konrad-Zuse-Zentrum fuer Informationstechnik Berlin (ZIB) (Germany)
2006-11-15
We present new results for light quark masses. The calculations are performed using two flavours of O(a) improved Wilson fermions. We have reached lattice spacings as small as a {proportional_to}0.07 fm and pion masses down to m{sub {pi}} {proportional_to}340 MeV in our simulations. This gives us significantly better control on the chiral and continuum extrapolations. (orig.)
Disoriented chiral condensates and anomalous production of pions
International Nuclear Information System (INIS)
Martinis, M.; Mikuta-Martinis, V.; Crnugelj, J.
1999-01-01
The leading-particle effect and the factorization property of the scattering amplitude in the impact parameter space are used to study semiclassical production of pions in the central region. The mechanism is related to the isospin-uniform solution of the nonlinear σ-model coupled to quark degrees of freedom. The multipion exchange potential between two quarks is derived. It is shown that the soft chiral pion Bremsstrahlung also leads to anomalously large fluctuations in the ratio of neutral to charged pion.. We show that only direct production of pions in the form of an isoscalar coherent pulse without isovector pairs can lead to large neutral-charged fluctuations. (Authors)
Kinetics of the chiral phase transition
Energy Technology Data Exchange (ETDEWEB)
Hees, Hendrik van [Johann-Wolfgang-Goethe-Universitaet Frankfurt, Institut fuer Theoretische Physik, Frankfurt (Germany); Frankfurt Institute for Advanced Studies (FIAS), Frankfurt (Germany); Wesp, Christian; Meistrenko, Alex; Greiner, Carsten [Johann-Wolfgang-Goethe-Universitaet Frankfurt, Institut fuer Theoretische Physik, Frankfurt (Germany)
2016-07-01
We simulate the kinetics of the chiral phase transition in hot and dense strongly interacting matter within a novel kinetic-theory approach. Employing an effective linear σ model for quarks, σ mesons, and pions we treat the quarks within a test-particle ansatz for solving the Boltzmann transport equation and the mesons in terms of classical fields. The decay-recombination processes like σ <-> anti q+q are treated using a kind of wave-particle dualism using the exact conservation of energy and momentum. After demonstrating the correct thermodynamic limit for particles and fields in a ''box calculation'' we apply the simulation to the dynamics of an expanding fireball similar to the medium created in ultrarelativistic heavy-ion collisions.
Accessible solitons of fractional dimension
Energy Technology Data Exchange (ETDEWEB)
Zhong, Wei-Ping, E-mail: zhongwp6@126.com [Department of Electronic and Information Engineering, Shunde Polytechnic, Guangdong Province, Shunde 528300 (China); Texas A& M University at Qatar, P.O. Box 23874, Doha (Qatar); Belić, Milivoj [Texas A& M University at Qatar, P.O. Box 23874, Doha (Qatar); Zhang, Yiqi [Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China)
2016-05-15
We demonstrate that accessible solitons described by an extended Schrödinger equation with the Laplacian of fractional dimension can exist in strongly nonlocal nonlinear media. The soliton solutions of the model are constructed by two special functions, the associated Legendre polynomials and the Laguerre polynomials in the fraction-dimensional space. Our results show that these fractional accessible solitons form a soliton family which includes crescent solitons, and asymmetric single-layer and multi-layer necklace solitons. -- Highlights: •Analytic solutions of a fractional Schrödinger equation are obtained. •The solutions are produced by means of self-similar method applied to the fractional Schrödinger equation with parabolic potential. •The fractional accessible solitons form crescent, asymmetric single-layer and multilayer necklace profiles. •The model applies to the propagation of optical pulses in strongly nonlocal nonlinear media.
Traces of chiral symmetry on light planes
International Nuclear Information System (INIS)
Sazdjian, Hagop.
1975-01-01
The possibility of a description of the hadronic world by field theories defined on light planes and formulated in terms of three interacting quark field variables has been investigated. The framework of models where the chiral symmetry breaking is produced by the only mechanical masses of quarks has been considered. The hypothesis that the light plane charges generate in the real world approximate symmetries of one particle states has also been emitted. The projection of the algebraic structure of the observables in the space of physical states have yielded various relations in terms of the masses and couplings of the low lying mesons. They seem to be in agreement with experimental data, and suggest the consistency of the adopted model to describe symmetry breaking phenomena. The quark mechanical masses m(u) approximately 30MeV and m(s) approximately 200MeV have also been estimated. The smallness of these masses in respect to those of hadrons seems to indicate that they do not constitute the only mass scale of the hadronic world, but that there should exist another scale parameter, independent of the quark mechanical masses, and symmetric of SU(3) [fr
The Quark's Model and Confinement
Novozhilov, Yuri V.
1977-01-01
Quarks are elementary particles considered to be components of the proton, the neutron, and others. This article presents the quark model as a mathematical concept. Also discussed are gluons and bag models. A bibliography is included. (MA)
Torons, chiral symmetry breaking and U(1) problem in σ-model and gauge theories. Part 2
International Nuclear Information System (INIS)
Zhitnitskij, A.R.
1989-01-01
The main point of this work is the physical consenquences of the existence of fractional charge in the σ-models and espesially in the physically interesting theory QCD. It is shown that the corresponding fluctuations ensure spontaneous breaking of the chiral symmetry and give a nonzero contribution to the chiral condensate. Toron solution is determined on the manifold with boundary. In this case many questions arise such as: global boundary conditions, the stability of the solution, self-adjointness of Dirac operator, single-valuedness of the physical values and so on. These questions are interconnected and turn out to be self cobsistent only for the special choice of the topological number (Q=1/2 for SU(2)). It is shown that in the Dirac's spectrum of the quarks the gap between zero and the continuum is absent. 50 refs.; 10 figs
Large Psub(tr) and quark-quark cross section in the dynamical model of factorizing quarks
International Nuclear Information System (INIS)
Kapshay, V.N.; Sidorov, A.V.; Skachkov, N.B.
1978-01-01
Dynamical model of factorizing quarks containing the quark mass as free model parameter was described. Model calculations were compared with the experimental data on the cross section of the inclusive πsup(o) meson production in the proton-proton interaction. It is shown that the results of the paper are in good agreement with experiments
Quark Condensate in the Strange Matter
Institute of Scientific and Technical Information of China (English)
LU Chang-Fang; LU" Xiao-Fu
2003-01-01
In a nonlinear chiral SU(3) framework, we investigate the quark condensate in the strange matter including N, Σ, Ξ, and Λ, making use of chiral symmetry spontaneous breaking Lagrangian and mean-field approximation. The results show that the chiral symmetry is restored partially when the strange matter density increases and that 〈π→2〉 plays a very important role in the strange matter which may approach the constituents of the neutron stars. In addition, we can find that the strange matter density where the π-condensate emerges leads to the ratio of the nucleon number to baryon number.
Ahmed, Mohammad W.; Gao, Haiyan; Weller, Henry R.; Holstein, Barry
2007-10-01
.5 GeV with BABAR / A. Denig. The pion vector form-factor and (g-2)u / C. Smith. Partially quenched CHPT results to two loops / J. Bijnens. Pion-pion scattering with mixed action lattice QCD / P.F. Bedaque. Meson systems with Ginsparg-Wilson valence quarks / A. Walker-Loud. Low energy constants from the MILC collaboration / C. Bernard. Finite volume effects: lattice meets CHPT / G. Schierholz. Lattice QCD simulations with two light dynamical (Wilson) quarks / L. Giusti. Do we understand the low-energy constant L8? / M. Golterman. Quark mass dependence of LECs in the two-flavour sector / M. Schmid. Progress report on the [Pie symbol]0 Lifetime experiment (PRIMEX) at Jlab / D.E. McNulty. Determination of the charged pion polarizabilities / L.V. Fil'kov. Proposed measurement of electroproduction of [Pie symbol]0 near threshold using a large acceptance spectrometer / R.A. Lindgren. The [Pie symbol] meson in [Pie symbol]K scattering / B. Moussallam. Strangeness -1 Meson-Baryon scattering S-wave / J.A. Oller. Results on light mesons decays and dynamics at KLOE / M. Martini. Studies of decays of [symbol] and [symbol] mesons with WASA detector / A. Kupsc. Heavy Quark-Diquark symmetry and X PT for doubly heavy baryons / T. Mehen. HHChPT applied to the charmed-strange parity partners/ R.P. Springer. Study of pion structure through precise measurements of the [Pie symbol]+ --> e+[symbol] decay / D. Pocanic. Exceptional and non-exceptional contributions to the radiative [Pie symbol] decay / V. Mateu. Leading chiral logarithms from unitarity, analyticity and the Roy equations / A. Fuhrer. All orders symmetric subtraction of the nonlinear sigma model in D=4 / A. Quadri -- pt. C. Chiral dynamics in few-nucleon systems. Working group summary: chiral dynamics in few-nucleon systems / H.W Hammer, N. Kalantar-Nayestanaki, and D.R. Phillips. Power counting in nuclear chiral effective field theory / U. van Kolck. On the consistency of Weinberg's power counting / U-G Mei ner. Renormalization
Spectral function and quark diffusion constant in non-critical holographic QCD
Energy Technology Data Exchange (ETDEWEB)
Bu Yanyan, E-mail: yybu@itp.ac.cn [Institute of Theoretical Physics, Academia Sinica, Beijing 100190 (China); Yang Jinmin, E-mail: jmyang@itp.ac.cn [Institute of Theoretical Physics, Academia Sinica, Beijing 100190 (China)
2012-02-11
Motivated by recent studies of intersecting D-brane systems in critical string theory and phenomenological AdS/QCD models, we present a detailed analysis for the vector and scalar fluctuations in a non-critical holographic QCD model in the high temperature phase, i.e., the chiral symmetric phase. This model is described by N{sub f} pairs of D4 and D4{sup Macron} probe branes in a non-critical AdS{sub 6} black hole background. Focusing on the hydrodynamic as well as the high frequency limit, we analytically obtain spectral functions for vector and scalar modes on the flavor probe. Then we extract the light quark diffusion constant for flavor current using three different methods and find that different methods give the same results. We also compute the heavy quark diffusion constant for comparison with the light quark case.
Quark cluster model in the three-nucleon system
International Nuclear Information System (INIS)
Osman, A.
1986-11-01
The quark cluster model is used to investigate the structure of the three-nucleon systems. The nucleon-nucleon interaction is proposed considering the colour-nucleon clusters and incorporating the quark degrees of freedom. The quark-quark potential in the quark compound bag model agrees with the central force potentials. The confinement potential reduces the short-range repulsion. The colour van der Waals force is determined. Then, the probability of quark clusters in the three-nucleon bound state systems are numerically calculated using realistic nuclear wave functions. The results of the present calculations show that quarks cluster themselves in three-quark systems building the quark cluster model for the trinucleon system. (author)
fK /f{pi} in Full QCD with Domain Wall Valence Quarks
Energy Technology Data Exchange (ETDEWEB)
Silas Beane; Paulo Bedaque; Konstantinos Orginos; Martin Savage
2007-05-01
We compute the ratio of pseudoscalar decay constants f{sub K}/f{sub {pi}} using domain-wall valence quarks and rooted improved Kogut-Susskind sea quarks. By employing continuum chiral perturbation theory, we extract the Gasser-Leutwyler low-energy constant L{sub 5}, and extrapolate f{sub K}/f{sub {pi}} to the physical point. We find: f{sub K}/f{sub {pi}} = 1.218 {+-} 0.002{sub -0.024}{sup +0.011} where the first error is statistical and the second error is an estimate of the systematic due to chiral extrapolation and fitting procedures. This value agrees within the uncertainties with the determination by the MILC collaboration, calculated using Kogut-Susskind valence quarks, indicating that systematic errors arising from the choice of lattice valence quark are small.
Schwinger Dyson equations: Dynamical chiral symmetry breaking and confinement
International Nuclear Information System (INIS)
Roberts, C.D.
1992-01-01
A representative but not exhaustive review of the Schwinger-Dyson equation (SDE) approach to the nonperturbative study of QCD is presented. The main focus is the SDE for the quark self energy but studies of the gluon propagator and quark-gluon vertex are also discussed insofar as they are important to the quark SDE. The scope of this article is the application of these equations to the study of dynamical chiral symmetry breaking, quark confinement and the phenomenology of the spectrum and dynamics of QCD
Perspectives in hadron and quark dynamics
International Nuclear Information System (INIS)
Amsler, C.; Bressani, T.; Close, F.E.; De Sanctis, E.; Frois, B.; Kunne, F.; Laget, J.M.; von Harrach, D.; Metag, V.; Mulders, P.J.; Riska, D.O.
1997-01-01
In the past two decades, quantum chromodynamics (QCD) has emerged as the theory for the strong force with quarks and gluons as the building blocks of nuclear matter at large densities and high temperatures. One of the most exciting challenges for nuclear physics is the study of the non-perturbative regime of QCD. It is this regime which is relevant for understanding how the elementary fields of QCD - quarks and gluons - build up particles such as protons and neutrons. A basic theoretical difficulty is the non-existence of asymptotic, isolated, colored objects. This is a feature of the richness of the vacuum structure of QCD. Understanding the different QCD phases and the transitions among them is the challenge of the modern study of strong interactions. At low energy, chiral symmetry can be used to build aneffective theory of hadron interactions. At higher energies, the parton model uses non-perturbative quark and gluon distributions to describe hadronic scattering processes. (orig)
Vector-like quarks coupling discrimination at the LHC and future hadron colliders
Barducci, D.; Panizzi, L.
2017-12-01
The existence of new coloured states with spin one-half, i.e. extra-quarks, is a striking prediction of various classes of new physics models. Should one of these states be discovered during the 13 TeV runs of the LHC or at future high energy hadron colliders, understanding its properties will be crucial in order to shed light on the underlying model structure. Depending on the extra-quarks quantum number under SU(2) L , their coupling to Standard Model quarks and bosons have either a dominant left- or right-handed chiral component. By exploiting the polarisation properties of the top quarks arising from the decay of pair-produced extra quarks, we show how it is possible to discriminate among the two hypothesis in the whole discovery range currently accessible at the LHC, thus effectively narrowing down the possible interpretations of a discovered state in terms of new physics scenarios. Moreover, we estimate the discovery and discrimination power of future prototype hadron colliders with centre of mass energies of 33 and 100 TeV.
Quark model calculation of the parity violating NNπ coupling in the Weinberg-Salam model
International Nuclear Information System (INIS)
Koerner, J.G.; Kramer, G.; Willrodt, J.
1978-10-01
We argue that there are no charged current contributions to the parity violating NNπ coupling except for small contributions from flavour symmetry breaking effects. From the neutral current product only the left-right chiral component contributes which is considerably enhanced due to gluon corrections and due to the lightness of current quark masses. The resulting parity violating NNπ coupling has a definite phase and is 10 times stronger than the value used previously in nuclear physics calculations. (orig.) [de
Important configurations in six-quark N-N states. II. Current quark model
International Nuclear Information System (INIS)
Stancu, F.; Wilets, L.
1989-01-01
Quark basis states constructed from molecular-type orbitals were shown previously to be more convenient to use than cluster model states for N-N processes. The usual cluster model representation omits configurations which emerge naturally in a molecular basis which contains the same number of spatial functions. The importance of the omitted states was demonstrated for a constituent quark model. The present work extends the study to the prototypical current quark model, namely the MIT bag. In order to test the expansion for short-range N-N interactions, the eigenstates and eigenenergies of six quarks in a spherical bag, including one-gluon exchange, are calculated. The lowest eigenenergies are lowered significantly with respect to the usual cluster model. This reaffirms the importance of dynamics for obtaining the needed short-range repulsion
Hyperon polarizabilities in the bound-state soliton model
International Nuclear Information System (INIS)
Gobbi, C.; Scoccola, N.N.
1996-01-01
A detailed calculation of electric and magnetic static polarizabilities of octet hyperons is presented in the framework of the bound-state soliton model. Both seagull and dispersive contributions are considered, and the results are compared with different model predictions. (orig.)
Cheshire cat phenomena and quarks in nuclei
International Nuclear Information System (INIS)
Rho, M.
1986-11-01
The notion of the ''Cheshire Cat'' principle in hadron structure is developed rigorously in (1+1) dimensions and approximately in (3+1) dimensions for up- and down-quark flavor systems. This phenomenon is invoked to address the issue as to whether or not direct quark-gluon signatures can be ''seen'' in low-energy nuclear phenomena. How addition of the third flavor -strangeness- can modify the Cheshire Cat property is discussed. It is proposed that one of the primary objectives of nuclear physics be to probe -and disturb- the ''vacuum'' of the strong interactions (QCD) and that for this purpose the chiral symmetry SU(3)xSU(3) can play a crucial role in normal and extreme conditions. As an illustration, kaon condensation at a density ρ>∼ 3ρ 0 is discussed in terms of a toy model and is related to ''cleansing'' of the quark condensates from the vacuum
Soliton-soliton effective interaction
International Nuclear Information System (INIS)
Maki, J.N.
1986-01-01
A scheme of semi-phenomenological quantization is proposed for the collision process of two equal size envelopes-solitons provided by nonlinear Schroedinger equation. The time advance due to two envelopes-solitons collision was determined. Considering the solitons as puntual particles and using the description of classical mechanics, the effective envelope soliton-envelope soliton attractive potential, denominated modified Poschl-Teller potential. The obtainment of this potential was possible using the information in from of system memory, done by an analytical expression of time delay. Such system was quantized using this effective potential in Schroeding equation. The S col matrix of two punctual bodies was determined, and it is shown that, in the limit of 1 2 2 /mN 4 it reproduces the exact S 2N matrix obtained from soliton packet wich incurs on another soliton packet. Every ones have the same mass, interacts by contact force between two bodies. These packets have only one bound state, i e, do not have excited states. It was verified that, using the S col matrix, the binding energy of ground state of the system can be obtained, which is coincident with 2N particles in the 1/N approximation. In this scheme infinite spurious bound states are found (M.C.K.) [pt
Perturbative current quark masses in QCD
International Nuclear Information System (INIS)
Scadron, M.D.
1982-01-01
Neutral PCAC current quark masses follow from the covariant light plane of QCD requirement that α-m-circumflex(M), which is not inconsistent with the spontaneous breakdown of chiral symmetry. The resulting current quark mass ratio (m sub(s)/m-circumflex) sub(curr)=5 and scale m-circumflex sub(curr)=62 MeV at M=2 Gev are compatible with the observed πNσ - term, the Goldberger-Treiman discrepancy, the low-lying 0 - , 1/2 + , 1 - , 3/2 + hadron mass spectrum, the flavor independence of the dynamically generated quark mass and the perturbative weak binding limit. (author)
Chiral spiral induced by a strong magnetic field
Directory of Open Access Journals (Sweden)
Abuki Hiroaki
2016-01-01
Full Text Available We study the modification of the chiral phase structure of QCD due to an external magnetic field. We first demonstrate how the effect of magnetic field can systematically be incorporated into a generalized Ginzburg-Landau framework. We then analyze the phase structure in the vicinity of the chiral critical point. In the chiral limit, the effect is found to be so drastic that it brings a “continent” of chiral spiral in the phase diagram, by which the chiral tricritical point is totally washed out. This is the case no matter how small the intensity of magnetic field is. On the other hand, the current quark mass protects the chiral critical point from a weak magnetic field. However, the critical point will eventually be covered by the chiral spiral phase as the magnetic field grows.
International Nuclear Information System (INIS)
Brekke, L.; Imbo, T.D.
1992-01-01
The authors study the inequivalent quantizations of (1 + 1)-dimensional nonlinear sigma models with space manifold S 1 and target manifold X. If x is multiply connected, these models possess topological solitons. After providing a definition of spin and statistics for these solitons and demonstrating a spin-statistics correlation, we give various examples where the solitons can have exotic statistics. In some of these models, the solitons may obey a generalized version of fractional statistics called ambistatistics. In this paper the relevance of these 2d models to the statistics of vortices in (2 + 1)-dimensional spontaneously broken gauge theories is discussed. The authors close with a discussion concerning the extension of our results to higher dimensions
Quarks and leptons from orbifolded superstring
International Nuclear Information System (INIS)
Choi, K.S.; Kim, J.E.
2006-01-01
This book seeks to be a guidebook on the journey towards the minimal supersymmetric standard model down the orbifold road. It takes the viewpoint that the chirality of matter fermions is an essential aspect that orbifold compactification allows to derive from higher-dimensional string theories in a rather straight-forward manner. Halfway between a textbook and a tutorial review, ''Quarks and Leptons from Orbifolded Superstring'' is intended for the graduate student and particle phenomenologist wishing to get acquainted with this field. (orig.)
Chiral perturbation theory with nucleons
International Nuclear Information System (INIS)
Meissner, U.G.
1991-09-01
I review the constraints posed on the interactions of pions, nucleons and photons by the spontaneously broken chiral symmetry of QCD. The framework to perform these calculations, chiral perturbation theory, is briefly discussed in the meson sector. The method is a simultaneous expansion of the Greens functions in powers of external moments and quark masses around the massless case, the chiral limit. To perform this expansion, use is made of a phenomenological Lagrangian which encodes the Ward-identities and pertinent symmetries of QCD. The concept of chiral power counting is introduced. The main part of the lectures of consists in describing how to include baryons (nucleons) and how the chiral structure is modified by the fact that the nucleon mass in the chiral limit does not vanish. Particular emphasis is put on working out applications to show the strengths and limitations of the methods. Some processes which are discussed are threshold photopion production, low-energy compton scattering off nucleons, πN scattering and the σ-term. The implications of the broken chiral symmetry on the nuclear forces are briefly described. An alternative approach, in which the baryons are treated as very heavy fields, is touched upon
Vectorlike chiral fourth family to explain muon anomalies
Raby, Stuart; Trautner, Andreas
2018-05-01
The Standard Model (SM) is amended by one generation of quarks and leptons which are vectorlike (VL) under the SM gauge group but chiral with respect to a new U(1 ) 3 -4 gauge symmetry. We show that this model can simultaneously explain the deviation of the muon g -2 as well as the observed anomalies in b →s μ+μ- transitions without conflicting with the data on Higgs decays, lepton flavor violation, or Bs-B¯s mixing. The model is string theory motivated and Grand Unified Theory compatible, i.e. UV complete, and fits the data predicting VL quarks, leptons, and a massive Z' at the TeV scale, as well as τ →3 μ and τ →μ γ within reach of future experiments. The Higgs couplings to SM generations are automatically aligned in flavor space.
CHARACTERIZATION AND MODELING OF SOLITON TRANSMISSION AT 2.5 GB/S OVER 200 KM
Directory of Open Access Journals (Sweden)
KHALID A. S. AL-KHATEEB
2010-09-01
Full Text Available Soliton characteristics and soliton transmission have been simulated using a VPI simulator. Simulation was also used to construct and study a soliton communication system. Near soliton pulses emitted by an actively mode-locked laser is then compressed in a dispersion-compensating fiber (DCF to produce solitons. The effects of non-linearity and active pre-chirping of mode-locked laser diode sources were also investigated. Assessment on a modeled system using real data shows that propagation over 250 km at 2.5 Gb/s in standard fibers with 20 ps pulse widths is possible in the 1550 nm wavelength range.
Multiloop soliton and multibreather solutions of the short pulse model equation
International Nuclear Information System (INIS)
Matsuno, Yoshimasa
2007-01-01
We develop a systematic procedure for constructing the multisoliton solutions of the short pulse (SP) model equation which describes the propagation of ultra-short pulses in nonlinear medica. We first introduce a novel hodograph transformation to convert the SP equation into the sine-Gordon (sG) equation. With the soliton solutions of the sG equation, the system of linear partial differential equations governing the inverse mapping can be integrated analytically to obtain the soliton solutions of the SP equation in the form of the parametric representation. By specifying the soliton parameters, we obtain the multiloop and multibreather solutions. We investigate the asymptotic behavior of both solutions and confirm their solitonic feature. The nonsingular breather solutions may play an important role in studying the propagation of ultra-short pulses in an optical fibre. (author)
A Clifford algebra approach to chiral symmetry breaking and fermion mass hierarchies
Lu, Wei
2017-09-01
We propose a Clifford algebra approach to chiral symmetry breaking and fermion mass hierarchies in the context of composite Higgs bosons. Standard model fermions are represented by algebraic spinors of six-dimensional binary Clifford algebra, while ternary Clifford algebra-related flavor projection operators control allowable flavor-mixing interactions. There are three composite electroweak Higgs bosons resulted from top quark, tau neutrino, and tau lepton condensations. Each of the three condensations gives rise to masses of four different fermions. The fermion mass hierarchies within these three groups are determined by four-fermion condensations, which break two global chiral symmetries. The four-fermion condensations induce axion-like pseudo-Nambu-Goldstone bosons and can be dark matter candidates. In addition to the 125 GeV Higgs boson observed at the Large Hadron Collider, we anticipate detection of tau neutrino composite Higgs boson via the charm quark decay channel.
Topological solitons in the supersymmetric Skyrme model
Energy Technology Data Exchange (ETDEWEB)
Gudnason, Sven Bjarke [Institute of Modern Physics, Chinese Academy of Sciences,Lanzhou 730000 (China); Nitta, Muneto [Department of Physics, and Research and Education Center for Natural Sciences,Keio University, Hiyoshi 4-1-1, Yokohama, Kanagawa 223-8521 (Japan); Sasaki, Shin [Department of Physics, Kitasato University,Sagamihara 252-0373 (Japan)
2017-01-04
A supersymmetric extension of the Skyrme model was obtained recently, which consists of only the Skyrme term in the Nambu-Goldstone (pion) sector complemented by the same number of quasi-Nambu-Goldstone bosons. Scherk-Schwarz dimensional reduction yields a kinetic term in three or lower dimensions and a potential term in two dimensions, preserving supersymmetry. Euclidean solitons (instantons) are constructed in the supersymmetric Skyrme model. In four dimensions, the soliton is an instanton first found by Speight. Scherk-Schwarz dimensional reduction is then performed once to get a 3-dimensional theory in which a 3d Skyrmion-instanton is found and then once more to get a 2d theory in which a 2d vortex-instanton is obtained. Although the last one is a global vortex it has finite action in contrast to conventional theory. All of them are non-BPS states breaking all supersymmetries.
Bag model with broken chiral symmetry
International Nuclear Information System (INIS)
Efrosinin, V.P.; Zaikin, D.A.
1986-01-01
A variant of the bag model in which chiral symmetry is broken and which provides a description of all the experimental data on the light hadrons, including the pion, is discussed. The pion and kaon decay constants are calculated in this model. The problem of taking into account the center-of-mass motion in bag models and the boundary conditions in the bag model with broken chiral symmetry are also discussed
International Nuclear Information System (INIS)
Bullough, R.K.
1978-01-01
Two sorts of solitons are considered - the classical soliton, a solitary wave which shows great stability in collision with other solitary waves, and the quantal, that is quantised, soliton. Solitons as mathematical objects have excited theoreticians because of their wide ranging applications in physics. They appear as solutions of particular nonlinear wave equations which often have a certain universal significance. The importance of solitons in modern physics is discussed with especial reference to; nonlinearity and solitons, the nonlinear Schroedinger equation, the sine-Gordon equation, notional spins and particle physics. (U.K.)
International Nuclear Information System (INIS)
Friedberg, R.
1977-01-01
It is pointed out that the study of solitons offers a new departure for the problem of handling bound states in relativistic quantum field theory which has hampered development of a simple conventional model of hadrons. The principle is illustrated by the case of a quantum mechanical particle moving in two dimensions under the centrally symmetric and quasi-harmonic potential. Restriction is made to nontopological solitons. These ideas are applied to a model of hadrons. 10 references
Mean-field theory and solitonic matter
International Nuclear Information System (INIS)
Cohen, T.D.
1989-01-01
Finite density solitonic matter is considered in the context of quantum field theory. Mean-field theory, which provides a reasonable description for single-soliton properties gives rise to a crystalline description. A heuristic description of solitonic matter is given which shows that the low-density limit of solitonic matter (the limit which is presumably relevant for nuclear matter) does not commute with the mean-field theory limit and gives rise to a Fermi-gas description of the system. It is shown on the basis of a formal expansion of simple soliton models in terms of the coupling constant why one expects mean-field theory to fail at low densities and why the corrections to mean-field theory are nonperturbative. This heuristic description is tested against an exactly solvable 1+1 dimensional model (the sine-Gordon model) and found to give the correct behavior. The relevance of these results to the program of doing nuclear physics based on soliton models is discussed. (orig.)
Existence of Torsional Solitons in a Beam Model of Suspension Bridge
Benci, Vieri; Fortunato, Donato; Gazzola, Filippo
2017-11-01
This paper studies the existence of solitons, namely stable solitary waves, in an idealized suspension bridge. The bridge is modeled as an unbounded degenerate plate, that is, a central beam with cross sections, and displays two degrees of freedom: the vertical displacement of the beam and the torsional angles of the cross sections. Under fairly general assumptions, we prove the existence of solitons. Under the additional assumption of large tension in the sustaining cables, we prove that these solitons have a nontrivial torsional component. This appears relevant for security since several suspension bridges collapsed due to torsional oscillations.
Vector-Interaction-Enhanced Bag Model
Cierniak, Mateusz; Klähn, Thomas; Fischer, Tobias; Bastian, Niels-Uwe
2018-02-01
A commonly applied quark matter model in astrophysics is the thermodynamic bag model (tdBAG). The original MIT bag model approximates the effect of quark confinement, but does not explicitly account for the breaking of chiral symmetry, an important property of Quantum Chromodynamics (QCD). It further ignores vector repulsion. The vector-interaction-enhanced bag model (vBag) improves the tdBAG approach by accounting for both dynamical chiral symmetry breaking and repulsive vector interactions. The latter is of particular importance to studies of dense matter in beta-equilibriumto explain the two solar mass maximum mass constraint for neutron stars. The model is motivated by analyses of QCD based Dyson-Schwinger equations (DSE), assuming a simple quark-quark contact interaction. Here, we focus on the study of hybrid neutron star properties resulting from the application of vBag and will discuss possible extensions.
Ginsparg-Wilson pions scattering in a sea of staggered quarks
International Nuclear Information System (INIS)
Chen, J.-W.; O'Connell, Donal; Van de Water, Ruth; Walker-Loud, Andre
2006-01-01
We calculate isospin 2 pion-pion scattering in chiral perturbation theory for a partially quenched, mixed action theory with Ginsparg-Wilson valence quarks and staggered sea quarks. We point out that for some scattering channels, the power-law volume dependence of two-pion states in nonunitary theories such as partially quenched or mixed action QCD is identical to that of QCD. Thus one can extract infinite-volume scattering parameters from mixed action simulations. We then determine the scattering length for both 2 and 2+1 sea quarks in the isospin limit. The scattering length, when expressed in terms of the pion mass and the decay constant measured on the lattice, has no contributions from mixed valence-sea mesons, thus it does not depend upon the parameter, C Mix , that appears in the chiral Lagrangian of the mixed theory. In addition, the contributions which nominally arise from operators appearing in the mixed action O(a 2 m q ) Lagrangian exactly cancel when the scattering length is written in this form. This is in contrast to the scattering length expressed in terms of the bare parameters of the chiral Lagrangian, which explicitly exhibits all the sicknesses and lattice spacing dependence allowed by a partially quenched mixed action theory. These results hold for both 2 and 2+1 flavors of sea quarks
Nonequilibrium chiral fluid dynamics including dissipation and noise
International Nuclear Information System (INIS)
Nahrgang, Marlene; Herold, Christoph; Bleicher, Marcus; Leupold, Stefan
2011-01-01
We present a consistent theoretical approach for the study of nonequilibrium effects in chiral fluid dynamics within the framework of the linear σ model with constituent quarks. Treating the quarks as an equilibrated heat bath, we use the influence functional formalism to obtain a Langevin equation for the σ field. This allows us to calculate the explicit form of the damping coefficient and the noise correlators. For a self-consistent derivation of both the dynamics of the σ field and the quark fluid, we have to employ the 2PI (two-particle irreducible) effective action formalism. The energy dissipation from the field to the fluid is treated in the exact formalism of the 2PI effective action where a conserved energy-momentum tensor can be constructed. We derive its form and comment on approximations generating additional terms in the energy-momentum balance of the entire system.
International Nuclear Information System (INIS)
Shen Kun; Qiu Zhongping
1993-01-01
Chiral Ward-Takahashi identities at finite temperature are derived in (2+1) dimensional chiral Gross-Neveu model. In terms of these identities, fermion mass generation and the mass spectra of bound states are investigate at finite temperature. Taking the fermion mass as an order parameter, the authors discuss the phase structure and chiral phase transition and obtain the critical temperature
Subquark model of leptons and quarks
International Nuclear Information System (INIS)
Terazawa, Hidezumi.
1979-09-01
1) First, various subquark models so far proposed are briefly reviewed. Classifications of leptons and quarks in the models and their comparison are made. Our spinor-subquark model of leptons and quarks in which leptons and quarks are made of three subquarks of spin 1/2 is discussed in detail. 2) The possibility that guage bosons and Higgs scalars are also made of a subquark-antisubquark pair is discussed. 3) Exotic states of subquarks such as leptons and quarks of spin 3/2, exotic fermions, and exotic bosons are predicted in our model. 4) Subquark currents and their algebra are proposed. 5) Two unified subquark models of strong and electroweak interactions are discussed. The one is a gauge model and the other is a model of the Nambu-Jona-Lasinio type. 6) A subquark model of gravity and its supergrand unification is proposed. 7) An finally, a speculation is made on ''color-space correspondence''. (author)
Deformed baryons: constituent quark model vs. bag model
International Nuclear Information System (INIS)
Iwamura, Y.; Nogami, Y.
1985-01-01
Recently Bhaduri et al. developed a nonrelativistic constituent quark model for deformed baryons. In that model the quarks move in a deformable mean field, and the deformation parameters are determined by minimizing the quark energy subject to the constraint of volume conservation. This constraint is an ad hoc assumption. It is shown that, starting with a bag model, a model similar to that of Bhaduri et al. can be constructed. The deformation parameters are determined by the pressure balance on the bag surface. There is, however, a distinct difference between the two models with respect to the state dependence of the ''volume''. Implications of this difference are discussed
A quark structure of hadrons and nuclei
International Nuclear Information System (INIS)
Chakrabarty, S.; Deoghuria, S.
1992-08-01
In this review we look into the recent understanding of mesons, baryons and nuclei as few quark bound states within the framework of quantum chromodynamics (QCD). In particular, we have reviewed our understanding of the nature of confining interaction, the spin - dependence of colour forces and the role of non-perturbative effects in the study of quark forces in the potential model approach. We also give a comparative study of results obtained by several potential models with reference to the experimental data. We find that although the Lorentz nature of confinement and the nature of spin-dependent colour forces have been better understood now, only a partial understanding of these problems are obtained so far. Our study reveals that properties of baryons could be explained by the same potential model which successfully describe the mesons. However, the nuclei require chiral symmetry and non-perturbative methods for their description. We also discuss the relation between constituent, current and dynamical quark masses. We conclude that QCD motivated approaches have shown much success in explaining many results on hadronic and nuclear data. (author). 212 refs, 14 tabs
Soliton models in resonant and nonresonant optical fibers
Indian Academy of Sciences (India)
where Γ is the damping (> 0) and gain (< 0) parameter. Using the perturbation method and zeroth approximation, one-soliton solution is constructed and the amplification and damping of soliton is explained in figure 2. In addition, by introducing the initial phase. Figure 1. Two soliton solutions of the NLS equation. Figure 2.
Chiral symmetry breaking and confinement - solutions of relativistic wave equations
International Nuclear Information System (INIS)
Murugesan, P.
1983-01-01
In this thesis, an attempt is made to explore the question whether confinement automatically leads to chiral symmetry breaking. While it should be accepted that chiral symmetry breaking manifests in nature in the absence of scalar partners of pseudoscalar mesons, it does not necessarily follow that confinement should lead to chiral symmetry breaking. If chiral conserving forces give rise to observed spectrum of hadrons, then the conjuncture that confinement is responsible for chiral symmetry breaking is not valid. The method employed to answer the question whether confinement leads to chiral symmetry breaking or not is to solve relativistic wave equations by introducing chiral conserving as well as chiral breaking confining potentials and compare the results with experimental observations. It is concluded that even though chiral symmetry is broken in nature, confinement of quarks need not be the cause of it
Chirality conservation in the lattice gauge theory
International Nuclear Information System (INIS)
Peskin, M.E.
1978-01-01
The derivation of conservation laws corresponding to chiral invariance in quantum field theories of interacting quarks and gluons are studied. In particular there is interest in observing how these conservation laws are constrained by the requirement that the field theory be locally gauge invariant. To examine this question, a manifestly gauge-invariant definition of local operators in a quantum field theory is introduced, a definition which relies in an essential way on the use of the formulation of gauge fields on a lattice due to Wilson and Polyakov to regulate ultraviolet divergences. The conceptual basis of the formalism is set out and applied to a long-standing puzzle in the phenomenology of quark-gluon theories: the fact that elementary particle interactions reflect the conservation of isospin-carrying chiral currents but not of the isospin-singlet chiral current. It is well known that the equation for the isospin-singlet current contains an extra term, the operator F/sub mu neu/F/sup mu neu/, not present in the other chirality conservation laws; however, this term conventionally has the form of a total divergence and so still allows the definition of a conserved chiral current. It is found that, when the effects of maintaining gauge invariance are properly taken into account, the structure of this operator is altered by renormalization effects, so that it provides an explicit breaking of the unwanted chiral invariance. The relation between this argument, based on renormaliztion, is traced to a set of more heuristic arguments based on gauge field topology given by 't Hooft; it is shown that the discussion provides a validation, through short-distance analysis, of the picture 'Hooft has proposed. The formal derivation of conservation laws for chiral currents are set out in detail
Hirota's solitons in the affine and the conformal affine Toda models
International Nuclear Information System (INIS)
Aratyn, H.; Constantinidis, C.P.; Ferreira, L.A.; Gomes, J.F.; Zimerman, A.H.
1993-01-01
We use Hirota's method formulated as a recursive scheme to construct a complete set of soliton solutions for the affine Toda field theory based on an arbitrary Lie algebra. Our solutions include a new class of solitons connected with two different types of degeneracies encountered in Hirota's perturbation approach. We also derive an universal mass formula for all Hirota's solutions to the affine Toda model valid for all underlying Lie groups. Embedding of the affine Toda model in the conformal affine Toda model plays a crucial role in this analysis. (orig.)
Chiral symmetry breaking parameters from QCD sum rules
Energy Technology Data Exchange (ETDEWEB)
Mallik, S [Karlsruhe Univ. (T.H.) (Germany, F.R.). Inst. fuer Theoretische Kernphysik; Bern Univ. (Switzerland). Inst. fuer Theoretische Physik)
1982-10-04
We obtain new QCD sum rules by considering vacuum expectation values of two-point functions, taking all the five quark bilinears into account. These sum rules are employed to extract values of different chiral symmetry breaking parameters in QCD theory. We find masses of light quarks, m=1/2msub(u)+msub(d)=8.4+-1.2 MeV, msub(s)=205+-65 MeV. Further, we obtain corrections to certain soft pion (kaon) PCAC relations and the violation of SU(3) flavour symmetry by the non-strange and strange quark-antiquark vacuum condensate.
Pentaquarks in chiral color dielectric model
Indian Academy of Sciences (India)
Recent experiments indicate that a narrow baryonic state having strangeness +1 and mass of about 1540 MeV may be existing. Such a state was predicted in chiral model by Diakonov et al. In this work I compute the mass and width of this state in chiral color dielectric model. I show that the computed width is about 30 MeV.
Generalized sine-Gordon solitons
International Nuclear Information System (INIS)
Santos, C dos; Rubiera-Garcia, D
2011-01-01
In this paper, we construct analytical self-dual soliton solutions in (1+1) dimensions for two families of models which can be seen as generalizations of the sine-Gordon system but where the kinetic term is non-canonical. For that purpose we use a projection method applied to the sine-Gordon soliton. We focus our attention on the wall and lump-like soliton solutions of these k-field models. These solutions and their potentials reduce to those of the Klein-Gordon kink and the standard lump for the case of a canonical kinetic term. As we increase the nonlinearity on the kinetic term the corresponding potentials get modified and the nature of the soliton may change, in particular, undergoing a topology modification. The procedure constructed here is shown to be a sort of generalization of the deformation method for a specific class of k-field models. (paper)
International Nuclear Information System (INIS)
Garron, Nicolas; Hudspith, Renwick J.; Lytle, Andrew T.
2016-01-01
We compute the hadronic matrix elements of the four-quark operators relevant for K 0 −K̄ 0 mixing beyond the Standard Model. Our results are from lattice QCD simulations with n f =2+1 flavours of domain-wall fermion, which exhibit continuum-like chiral-flavour symmetry. The simulations are performed at two different values of the lattice spacing (a∼0.08 and a∼0.11 fm) and with lightest unitary pion mass ∼300 MeV. For the first time, the full set of relevant four-quark operators is renormalised non-perturbatively through RI-SMOM schemes; a detailed description of the renormalisation procedure is presented in a companion paper. We argue that the intermediate renormalisation scheme is responsible for the discrepancies found by different collaborations. We also study different normalisations and determine the matrix elements of the relevant four-quark operators with a precision of ∼5% or better.
Instantons and chiral symmetry breaking
International Nuclear Information System (INIS)
Carneiro, C.E.I.; McDougall, N.A.
1984-01-01
A detailed investigation of chiral symmetry breaking due to instanton dynamics is carried out, within the framework of the dilute gas approximation, for quarks in both the fundamental and adjoint representations of SU(2). The momentum dependence of the dynamical mass is found to be very similar in each representation. (orig.)
Instantons and chiral symmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Carneiro, C.E.I.; McDougall, N.A. (Oxford Univ. (UK). Dept. of Theoretical Physics)
1984-10-22
A detailed investigation of chiral symmetry breaking due to instanton dynamics is carried out, within the framework of the dilute gas approximation, for quarks in both the fundamental and adjoint representations of SU(2). The momentum dependence of the dynamical mass is found to be very similar in each representation.
The chiral phase transition in two-flavor QCD from imaginary chemical potential
Bonati, Claudio; D'Elia, Massimo; Philipsen, Owe; Sanfilippo, Francesco
2014-01-01
We investigate the order of the finite temperature chiral symmetry restoration transition for QCD with two massless fermions, by using a novel method, based on simulating imaginary values of the quark chemical potential $\\mu=i\\mu_i,\\mu_i\\in\\mathbb{R}$. Our method exploits the fact that, for low enough quark mass $m$ and large enough chemical potential $\\mu_i$, the chiral transition is decidedly first order, then turning into crossover at a critical mass $m_c(\\mu)$. It is thus possible to determine the critical line in the $m - \\mu^2$ plane, which can be safely extrapolated to the chiral limit by taking advantage of the known tricritical indices governing its shape. We test this method with standard staggered fermions and the result of our simulations is that $m_c(\\mu=0)$ is positive, so that the phase transition at zero density is definitely first order in the chiral limit, on our coarse $N_t=4$ lattices with $a\\simeq 0.3\\,\\mathrm{fm}$.
The quark model and asymptotic freedom
International Nuclear Information System (INIS)
Anon.
1986-01-01
The authors stress that it is not their task to provide a detailed account of the quark model (this is given in many monographs and reviews). This chapter is merely a prolog to the complex contemporary problems of high-energy physics which form the main subject of the present monograph. The quark model is based on the idea that there exist hypothetical fundamental particles - quarks, which they shall denote by q-bar/sub i/ (the index i characterizes the type of quark). From these particles and their antiparticles one constructs bound states, which are identified with the known hadrons. It turns out that all the observed mesons can be constructed from a quark q/sub i/ and an antiquark q-bar/sub i/, while the baryons (antibaryons) can be constructed from three quarks (antiquarks). To make it possible to build up all the observed hadrons and their characteristics, the authors must postulate that the quarks (antiquarks) possess the following properties: 1) spin 1/2; 2) isospin. It is necessary to introduce isospin 1/2 for the construction of the nonstrange hadrons. It has been proposed to denote the quark with isospin projection tau/sub 3/ = 1/2 by the symbol u (from the English ''up'') and the quark with isospin projection tau/sub 3/ = -1/2 by the symbol d (from the English ''down'')
Quark-gluon plasma: Status of heavy ion physics
Indian Academy of Sciences (India)
Department of Theoretical Physics, Tata Institute of Fundamental Research, ... such as quark confinement and chiral symmetry breaking, and quantitative details ... attempts have been made, and are being made, to address these issues.
Instanton-dyon ensembles reproduce deconfinement and chiral restoration phase transitions
Shuryak, Edward
2018-03-01
Paradigm shift in gauge topology at finite temperatures, from the instantons to their constituents - instanton-dyons - has recently lead to studies of their ensembles and very significant advances. Like instantons, they have fermionic zero modes, and their collectivization at suffciently high density explains the chiral symmetry breaking transition. Unlike instantons, these objects have electric and magnetic charges. Simulations of the instanton-dyon ensembles have demonstrated that their back reaction on the Polyakov line modifies its potential and generates the deconfinement phase transition. For the Nc = 2 gauge theory the transition is second order, for QCD-like theory with Nc = 2 and two light quark flavors Nf = 2 both transitions are weak crossovers at happening at about the same condition. Introduction of quark-flavor-dependent periodicity phases (imaginary chemical potentials) leads to drastic changes in both transitions. In particulaly, in the so called Z(Nc) - QCD model the deconfinement transforms to strong first order transition, while the chiral condensate does not disappear at all. The talk will also cover more detailed studies of correlations between the dyons, effective eta' mass and other screening masses.
On the quark-mass dependence of baryon ground-state masses
International Nuclear Information System (INIS)
Semke, Alexander
2010-01-01
Baryon masses of the flavour SU(3) octet and decuplet baryons are calculated in the framework of the Chiral Perturbations Theory - the effective field theory of the strong interaction. The chiral extrapolation to the higher meson (quark) masses is carried out. The comparison with the recent results on the baryon masses from lattice calculations are presented. (orig.)
On the quark-mass dependence of baryon ground-state masses
Energy Technology Data Exchange (ETDEWEB)
Semke, Alexander
2010-02-17
Baryon masses of the flavour SU(3) octet and decuplet baryons are calculated in the framework of the Chiral Perturbations Theory - the effective field theory of the strong interaction. The chiral extrapolation to the higher meson (quark) masses is carried out. The comparison with the recent results on the baryon masses from lattice calculations are presented. (orig.)
On the supersymmetric solitons and monopoles
International Nuclear Information System (INIS)
Hruby, J.
1978-01-01
The basic results in a new trend in supersymmetry and soliton theory are presented. It is shown that the soliton expectation value of the energy operator is mass of the soliton without the quantum corrections. A new supersymmetric monopole model in three dimensions is constructed by generalization of the supersymmetric sine-Gordon model in one space dimension
Construction of six-quark states from parity eigenfunctions for n-n processes
International Nuclear Information System (INIS)
Stancu, F.; Wilets, L.
1987-01-01
The work presented is to classify and construct six-quark states as totally antisymmetric states of six fermions, each described by orbital, spin, isospin, and color degrees of freedom. A classification scheme is proposed based on parity eigenfunctions. The single-particle hamiltonian is assumed to be reflectionally and axially symmetric and can be obtained, for example, from constrained Hartree-Fock or solition mean field theories. The ultimate aim is to study N-N processes in the context of the (relativistic) soliton bag model
QCD sum rules for D mesons. In-medium effects, chiral symmetry aspects and higher orders
Energy Technology Data Exchange (ETDEWEB)
Buchheim, Thomas
2017-04-11
Heavy open flavor mesons can serve as probes of hot and dense, strongly interacting matter in heavy-ion collisions suitable to mimic the extreme conditions shortly after the big-bang or in compact stars. Thus, the thorough theoretical investigation of medium modifications of D mesons is of utmost importance for the interpretation of the experimental data. Even at finite thermodynamic parameters, such as temperature and density, the non-perturbative framework of QCD sum rules allows for the determination of hadronic properties which are not accessible in perturbative quantum chromodynamics (QCD). By virtue of the separation of scales, long-range effects of hadrons are related to quark and gluon degrees of freedom, where features of the hadron spectrum are linked to condensates parameterizing the complex QCD ground state. This thesis furnishes the conception and calculus of QCD sum rules with emphasis on in-medium effects which are inevitable when addressing such effects in higher order contributions. In this regard, the notion and implications of medium-specific condensates are elucidated. Motivated by the significant numerical impact of four-quark condensates to the ρ meson sum rule we evaluate, for the first time, the corresponding in-medium mass-dimension 6 terms for D mesons tentatively employing the factorization hypothesis. Four-quark condensates containing heavy-quark operators may be included into the sum rule analysis utilizing the in-medium heavy-quark expansion made available here. Particular quark condensates are potential order parameters of chiral symmetry breaking, which is the mass generating mechanism of QCD giving the essential mass fraction to light hadrons. The interplay of altered spectral properties with changing in-medium QCD condensates, i. e. the chiral order parameters, can be studied with chiral partner sum rules. Although, introduced for light spin-1 mesons we foster their generalization to spin-0 open charm mesons demonstrating their
QCD sum rules for D mesons. In-medium effects, chiral symmetry aspects and higher orders
International Nuclear Information System (INIS)
Buchheim, Thomas
2017-01-01
Heavy open flavor mesons can serve as probes of hot and dense, strongly interacting matter in heavy-ion collisions suitable to mimic the extreme conditions shortly after the big-bang or in compact stars. Thus, the thorough theoretical investigation of medium modifications of D mesons is of utmost importance for the interpretation of the experimental data. Even at finite thermodynamic parameters, such as temperature and density, the non-perturbative framework of QCD sum rules allows for the determination of hadronic properties which are not accessible in perturbative quantum chromodynamics (QCD). By virtue of the separation of scales, long-range effects of hadrons are related to quark and gluon degrees of freedom, where features of the hadron spectrum are linked to condensates parameterizing the complex QCD ground state. This thesis furnishes the conception and calculus of QCD sum rules with emphasis on in-medium effects which are inevitable when addressing such effects in higher order contributions. In this regard, the notion and implications of medium-specific condensates are elucidated. Motivated by the significant numerical impact of four-quark condensates to the ρ meson sum rule we evaluate, for the first time, the corresponding in-medium mass-dimension 6 terms for D mesons tentatively employing the factorization hypothesis. Four-quark condensates containing heavy-quark operators may be included into the sum rule analysis utilizing the in-medium heavy-quark expansion made available here. Particular quark condensates are potential order parameters of chiral symmetry breaking, which is the mass generating mechanism of QCD giving the essential mass fraction to light hadrons. The interplay of altered spectral properties with changing in-medium QCD condensates, i. e. the chiral order parameters, can be studied with chiral partner sum rules. Although, introduced for light spin-1 mesons we foster their generalization to spin-0 open charm mesons demonstrating their
Energy Technology Data Exchange (ETDEWEB)
Christian, J M; McDonald, G S [Joule Physics Laboratory, School of Computing, Science and Engineering, Materials and Physics Research Centre, University of Salford, Salford M5 4WT (United Kingdom); Chamorro-Posada, P, E-mail: j.christian@salford.ac.u [Departamento de Teoria de la Senal y Comunicaciones e Ingenieria Telematica, Universidad de Valladolid, ETSI Telecomunicacion, Campus Miguel Delibes s/n, 47011 Valladolid (Spain)
2010-02-26
We report, to the best of our knowledge, the first exact analytical algebraic solitons of a generalized cubic-quintic Helmholtz equation. This class of governing equation plays a key role in photonics modelling, allowing a full description of the propagation and interaction of broad scalar beams. New conservation laws are presented, and the recovery of paraxial results is discussed in detail. The stability properties of the new solitons are investigated by combining semi-analytical methods and computer simulations. In particular, new general stability regimes are reported for algebraic bright solitons.
International Nuclear Information System (INIS)
Christian, J M; McDonald, G S; Chamorro-Posada, P
2010-01-01
We report, to the best of our knowledge, the first exact analytical algebraic solitons of a generalized cubic-quintic Helmholtz equation. This class of governing equation plays a key role in photonics modelling, allowing a full description of the propagation and interaction of broad scalar beams. New conservation laws are presented, and the recovery of paraxial results is discussed in detail. The stability properties of the new solitons are investigated by combining semi-analytical methods and computer simulations. In particular, new general stability regimes are reported for algebraic bright solitons.
Intermode Breather Solitons in Optical Microresonators
Guo, Hairun; Lucas, Erwan; Pfeiffer, Martin H. P.; Karpov, Maxim; Anderson, Miles; Liu, Junqiu; Geiselmann, Michael; Jost, John D.; Kippenberg, Tobias J.
2017-10-01
Dissipative solitons can be found in a variety of systems resulting from the double balance between dispersion and nonlinearity, as well as gain and loss. Recently, they have been observed to spontaneously form in Kerr nonlinear microresonators driven by a continuous wave laser, providing a compact source of coherent optical frequency combs. As optical microresonators are commonly multimode, intermode interactions, which give rise to avoided mode crossings, frequently occur and can alter the soliton properties. Recent works have shown that avoided mode crossings cause the soliton to acquire a single-mode dispersive wave, a recoil in the spectrum, or lead to soliton decay. Here, we show that avoided mode crossings can also trigger the formation of breather solitons, solitons that undergo a periodic evolution in their amplitude and duration. This new breather soliton, referred to as an intermode breather soliton, occurs within a laser detuning range where conventionally stationary (i.e., stable) dissipative Kerr solitons are expected. We experimentally demonstrate the phenomenon in two microresonator platforms (crystalline magnesium fluoride and photonic chip-based silicon nitride microresonators) and theoretically describe the dynamics based on a pair of coupled Lugiato-Lefever equations. We show that the breathing is associated with a periodic energy exchange between the soliton and a second optical mode family, a behavior that can be modeled by a response function acting on dissipative solitons described by the Lugiato-Lefever model. The observation of breathing dynamics in the conventionally stable soliton regime is relevant to applications in metrology such as low-noise microwave generation, frequency synthesis, or spectroscopy.
Nucleon in confining models with glueballs
International Nuclear Information System (INIS)
Broniowski, W.
1987-07-01
Solutions to non-chiral and chiral color dielectric models are discussed. The coupling of glueballs produces absolute quark confinement and generates selfconsistently a bag. 9 refs., 2 figs., 1 tab. (author)
Chiral symmetry in perturbative QCD
International Nuclear Information System (INIS)
Trueman, T.L.
1979-04-01
The chiral symmetry of quantum chromodynamics with massless quarks is unbroken in perturbation theory. Dimensional regularization is used. The ratio of the vector and axial vector renormalization constante is shown to be independent of the renormalization mass. The general results are explicitly verified to fourth order in g, the QCD coupling constant
Nucleon form factors. Probing the chiral limit
Energy Technology Data Exchange (ETDEWEB)
Goeckeler, M. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Haegler, P. [Technische Univ. Muenchen, Garching (Germany). Physik-Dept.; Horsley, R. [Edinburgh Univ. (GB). School of Physics] (and others)
2006-10-15
The electromagnetic form factors provide important hints for the internal structure of the nucleon and continue to be of major interest for experimentalists. For an intermediate range of momentum transfers the form factors can be calculated on the lattice. However, reliability of the results is limited by systematic errors due to the required extrapolation to physical quark masses. Chiral effective field theories predict a rather strong quark mass dependence in a range which was yet unaccessible for lattice simulations. We give an update on recent results from the QCDSF collaboration using gauge configurations with Nf=2, non-perturbatively O(a)-improved Wilson fermions at very small quark masses down to 340 MeV pion mass, where we start to probe the relevant quark mass region. (orig.)
Nucleon form factors. Probing the chiral limit
International Nuclear Information System (INIS)
Goeckeler, M.; Haegler, P.; Horsley, R.
2006-10-01
The electromagnetic form factors provide important hints for the internal structure of the nucleon and continue to be of major interest for experimentalists. For an intermediate range of momentum transfers the form factors can be calculated on the lattice. However, reliability of the results is limited by systematic errors due to the required extrapolation to physical quark masses. Chiral effective field theories predict a rather strong quark mass dependence in a range which was yet unaccessible for lattice simulations. We give an update on recent results from the QCDSF collaboration using gauge configurations with Nf=2, non-perturbatively O(a)-improved Wilson fermions at very small quark masses down to 340 MeV pion mass, where we start to probe the relevant quark mass region. (orig.)
Generalization of the quark rearrangement model
International Nuclear Information System (INIS)
Fields, T.; Chen, C.K.
1976-01-01
An extension and generalization of the quark rearrangement model of baryon annihilation is described which can be applied to all annihilation reactions and which incorporates some of the features of the highly successful quark parton model. Some p anti-p interactions are discussed
From quarks and gluons to baryon form factors.
Eichmann, Gernot
2012-04-01
I briefly summarize recent results for nucleon and [Formula: see text] electromagnetic, axial and transition form factors in the Dyson-Schwinger approach. The calculation of the current diagrams from the quark-gluon level enables a transparent discussion of common features such as: the implications of dynamical chiral symmetry breaking and quark orbital angular momentum, the timelike structure of the form factors, and their interpretation in terms of missing pion-cloud effects.
Revisiting the pion's scalar form factor in chiral perturbation theory
Juttner, Andreas
2012-01-01
The quark-connected and the quark-disconnected Wick contractions contributing to the pion's scalar form factor are computed in the two and in the three flavour chiral effective theory at next-to-leading order. While the quark-disconnected contribution to the form factor itself turns out to be power-counting suppressed its contribution to the scalar radius is of the same order of magnitude as the one of the quark-connected contribution. This result underlines that neglecting quark-disconnected contributions in simulations of lattice QCD can cause significant systematic effects. The technique used to derive these predictions can be applied to a large class of observables relevant for QCD-phenomenology.
Towards the chiral limit in QCD
International Nuclear Information System (INIS)
Shailesh Chandrasekharan
2006-01-01
Computing hadronic observables by solving QCD from first principles with realistic quark masses is an important challenge in fundamental nuclear and particle physics research. Although lattice QCD provides a rigorous framework for such calculations many difficulties arise. Firstly, there are no good algorithms to solve lattice QCD with realistically light quark masses. Secondly, due to critical slowing down, Monte Carlo algorithms are able to access only small lattice sizes on coarse lattices. Finally, due to sign problems it is almost impossible to study the physics of finite baryon density. Lattice QCD contains roughly three mass scales: the cutoff (or inverse lattice spacing) a -1 , the confinement scale Λ QCD , and the pion mass m π . Most conventional Monte Carlo algorithms for QCD become inefficient in two regimes: when Λ QCD becomes small compared to a -1 and when m π becomes small compared to Λ QCD . The former can be largely controlled by perturbation theory thanks to asymptotic freedom. The latter is more difficult since chiral extrapolations are typically non-analytic and can be unreliable if the calculations are not done at sufficiently small quark masses. For this reason it has been difficult to compute quantities close to the chiral limit. The essential goal behind this proposal was to develop a new approach towards understanding QCD and QCD-like theories with sufficiently light quarks. The proposal was based on a novel cluster algorithm discovered in the strong coupling limit with staggered fermions [1]. This algorithm allowed us to explore the physics of exactly massless quarks and as well as light quarks. Thus, the hope was that this discovery would lead to the complete solution of at least a few strongly coupled QCD-like theories. The solution would be far better than those achievable through conventional methods and thus would be able to shed light on the chiral physics from a new direction. By the end of the funding period, the project led
Boson-soliton scattering in the sine-Gordon model
International Nuclear Information System (INIS)
Lowe, M.
1979-01-01
In this paper the author calculates the boson-soliton scattering amplitudes for various processes in the sine-Gordon model to obtain results in agreement with the prediction of no-particle production and equality of ingoing and outgoing sets of momenta. (Auth.)
The Chiral and Angular Momentum Content of the ρ-Meson
Glozman, L. Ya.; Lang, C. B.; Limmer, M.
2010-01-01
It is possible to define and calculate in a gauge-invariant manner the chiral as well as the partial wave content of the quark-antiquark Fock component of a meson in the infrared, where mass is generated. Using the variational method and a set of interpolators that span a complete chiral basis we extract in a lattice QCD Monte Carlo simulation with n f = 2 dynamical light quarks the orbital angular momentum and spin content of the ρ-meson. We obtain in the infrared a simple 3 S 1 component as a leading component of the ρ-meson with a small admixture of the 3 D 1 partial wave, in agreement with the SU(6) flavor-spin symmetry.
Dual Ginzburg-Landau theory and quark nuclear physics
International Nuclear Information System (INIS)
Toki, H.; Suganuma, H.; Ichie, H.; Monden, H.; Umisedo, S.
1998-01-01
In quark nuclear physics (QNP), where hadrons and nuclei are described in terms of quarks and gluons, confinement and chiral symmetry breaking are the most fundamental phenomena. The dual Ginzburg-Landau (DGL) theory, which contains monopole fields as the most essential degrees of freedom and their condensation in the vacuum, is able to describe both phenomena. We discuss also the recovery of the chiral symmetry and the deconfinement phase transition at finite temperature in the DGL theory. As for the connection to QCD, we study the instanton configurations in the abelian gauge a la 't Hooft. We find a close connection between instantons and QCD monopoles. We demonstrate also the signature of confinement as the appearance of long monopole trajectories in the MA gauge for the case of dense instanton configurations. (orig.)
Y-Scaling in a simple quark model
International Nuclear Information System (INIS)
Kumano, S.; Moniz, E.J.
1988-01-01
A simple quark model is used to define a nuclear pair model, that is, two composite hadrons interacting only through quark interchange and bound in an overall potential. An ''equivalent'' hadron model is developed, displaying an effective hadron-hadron interaction which is strongly repulsive. We compare the effective hadron model results with the exact quark model observables in the kinematic region of large momentum transfer, small energy transfer. The nucleon reponse function in this y-scaling region is, within the traditional frame work sensitive to the nucleon momentum distribution at large momentum. We find a surprizingly small effect of hadron substructure. Furthermore, we find in our model that a simple parametrization of modified hadron size in the bound state, motivated by the bound quark momentum distribution, is not a useful way to correlate different observables
Hadron matrix elements of quark operators in the relativistic quark model
Energy Technology Data Exchange (ETDEWEB)
Bando, Masako; Toya, Mihoko [Kyoto Univ. (Japan). Dept. of Physics; Sugimoto, Hiroshi
1979-07-01
General formulae for evaluating matrix elements of two- and four-quark operators sandwiched by one-hadron states are presented on the basis of the relativistic quark model. Observed hadronic quantities are expressed in terms of those matrix elements of two- and four-quark operators. One observes various type of relativistic expression for the matrix elements which in the non-relativistic case reduce to simple expression of the so-called ''the wave function at the origin /sup +/psi(0)/sup +/''.
Confining but chirally symmetric dense and cold matter
International Nuclear Information System (INIS)
Glozman, L. Ya.
2012-01-01
The possibility for existence of cold, dense chirally symmetric matter with confinement is reviewed. The answer to this question crucially depends on the mechanism of mass generation in QCD and interconnection of confinement and chiral symmetry breaking. This question can be clarified from spectroscopy of hadrons and their axial properties. Almost systematical parity doubling of highly excited hadrons suggests that their mass is not related to chiral symmetry breaking in the vacuum and is approximately chirally symmetric. Then there is a possibility for existence of confining but chirally symmetric matter. We clarify a possible mechanism underlying such a phase at low temperatures and large density. Namely, at large density the Pauli blocking prevents the gap equation to generate a solution with broken chiral symmetry. However, the chirally symmetric part of the quark Green function as well as all color non-singlet quantities are still infrared divergent, meaning that the system is with confinement. A possible phase transition to such a matter is most probably of the first order. This is because there are no chiral partners to the lowest lying hadrons.
Quark cluster model and confinement
International Nuclear Information System (INIS)
Koike, Yuji; Yazaki, Koichi
2000-01-01
How confinement of quarks is implemented for multi-hadron systems in the quark cluster model is reviewed. In order to learn the nature of the confining interaction for fermions we first study 1+1 dimensional QED and QCD, in which the gauge field can be eliminated exactly and generates linear interaction of fermions. Then, we compare the two-body potential model, the flip-flop model and the Born-Oppenheimer approach in the strong coupling lattice QCD for the meson-meson system. Having shown how the long-range attraction between hadrons, van der Waals interaction, shows up in the two-body potential model, we discuss two distinct attempts beyond the two-body potential model: one is a many-body potential model, the flip-flop model, and the other is the Born-Oppenheimer approach in the strong coupling lattice QCD. We explain how the emergence of the long-range attraction is avoided in these attempts. Finally, we present the results of the application of the flip-flop model to the baryon-baryon scattering in the quark cluster model. (author)
Properties of bright solitons in averaged and unaveraged models for SDG fibres
Kumar, Ajit; Kumar, Atul
1996-04-01
Using the slowly varying envelope approximation and averaging over the fibre cross-section the evolution equation for optical pulses in semiconductor-doped glass (SDG) fibres is derived from the nonlinear wave equation. Bright soliton solutions of this equation are obtained numerically and their properties are studied and compared with those of the bright solitons in the unaveraged model.
Heavy baryons in the relativistic quark model
International Nuclear Information System (INIS)
Ebert, D.; Faustov, R.N.; Galkin, V.O.; Martynenko, A.P.; Saleev, V.A.
1996-07-01
In the framework of the relativistic quasipotential quark model the mass spectrum of baryons with two heavy quarks is calculated. The quasipotentials for interactions of two quarks and of a quark with a scalar and axial vector diquark are evaluated. The bound state masses of baryons with J P =1/2 + , 3/2 + are computed. (orig.)
Chiral-symmetry breakdown in large-N chromodynamics
International Nuclear Information System (INIS)
Coleman, S.; Witten, E.
1980-01-01
Chromodynamics with n flavors of massless quarks is invariant under chiral U(n) x U(n). It is shown that in the limit of a large number of colors, under reasonable assumptions, this symmetry group must spontaneously break down to diagonal U
International Nuclear Information System (INIS)
Khan, A.A.; Goeckeler, M.; Haegler, P.
2006-03-01
We present data for the axial coupling constant g A of the nucleon obtained in lattice QCD with two degenerate flavours of dynamical non-perturbatively improved Wilson quarks. The renormalisation is also performed non-perturbatively. For the analysis we give a chiral extrapolation formula for g A based on the small scale expansion scheme of chiral effective field theory for two degenerate quark flavours. Applying this formalism in a finite volume we derive a formula that allows us to extrapolate our data simultaneously to the infinite volume and to the chiral limit. Using the additional lattice data in finite volume we are able to determine the axial coupling of the nucleon in the chiral limit without imposing the known value at the physical point. (Orig.)
Energy Technology Data Exchange (ETDEWEB)
Khan, A.A.; Goeckeler, M. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Haegler, P. [Technische Univ. Muenchen (DE). Physik-Department, Theoretische Physik] (and others)
2006-03-15
We present data for the axial coupling constant g{sub A} of the nucleon obtained in lattice QCD with two degenerate flavours of dynamical non-perturbatively improved Wilson quarks. The renormalisation is also performed non-perturbatively. For the analysis we give a chiral extrapolation formula for g{sub A} based on the small scale expansion scheme of chiral effective field theory for two degenerate quark flavours. Applying this formalism in a finite volume we derive a formula that allows us to extrapolate our data simultaneously to the infinite volume and to the chiral limit. Using the additional lattice data in finite volume we are able to determine the axial coupling of the nucleon in the chiral limit without imposing the known value at the physical point. (Orig.)
Interplay between chiral symmetry breaking and color superconductivity in dense quark matter
International Nuclear Information System (INIS)
Kitazawa, Masakiyo
2003-01-01
We investigate the QCD phase diagram in finite temperature and density in a simple Nambu-Jona-Lasinio model with the vector interaction. It is shown that the repulsive density-density interaction coming from the vector term enhances competition between the chiral symmetry breaking (χSB) and color superconducting (CSC) phase transition: When the vector coupling is increased, the first order transition between the χSB and CSC phase becomes weaker, and the coexisting phase in which both the chiral and color-gauge symmetries are dynamically broken comes to exist in a wider region in the T-μ plane. We find that the critical line of the first order transition can have two endpoints for an intermediate range of the vector coupling. (author)
Aad, Georges; Abdallah, Jalal; Abdinov, Ovsat; Aben, Rosemarie; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Agricola, Johannes; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Baca, Matthew John; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James Baker; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Kathrin; Becker, Maurice; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, Carolyn; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bevan, Adrian John; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Biedermann, Dustin; Bieniek, Stephen Paul; Biesuz, Nicolo Vladi; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Bjergaard, David Martin; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blanco, Jacobo Ezequiel; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Blunier, Sylvain; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Bogaerts, Joannes Andreas; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutle, Sarah Kate; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozic, Ivan; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bruscino, Nello; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burckhart, Helfried; Burdin, Sergey; Burgard, Carsten Daniel; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Carbone, Ryne Michael; Cardarelli, Roberto; Cardillo, Fabio; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chang, Philip; Chapman, John Derek; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Shion; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choi, Kyungeon; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocio, Alessandra; Cirotto, Francesco; Citron, Zvi Hirsh; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Philip James; Clarke, Robert; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Colasurdo, Luca; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cúth, Jakub; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey Rogers; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Dette, Karola; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dutta, Baishali; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fayard, Louis; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fletcher, Gareth Thomas; Fletcher, Gregory; Fletcher, Rob Roy MacGregor; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; French, Sky; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fusayasu, Takahiro; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geich-Gimbel, Christoph; Geisler, Manuel Patrice; Gemme, Claudia; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghasemi, Sara; Ghazlane, Hamid; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gibbard, Bruce; Gibson, Stephen; Gignac, Matthew; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Gozani, Eitan; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Greenwood, Zeno Dixon; Grefe, Christian; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Yicheng; Gupta, Shaun; Gustavino, Giuliano; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Hall, David; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Haney, Bijan; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Makoto; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Hejbal, Jiri; Helary, Louis; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Hengler, Christopher; Henkelmann, Steffen; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hinman, Rachel Reisner; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohlfeld, Marc; Hohn, David; Holmes, Tova Ray; Homann, Michael; Hong, Tae Min; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Qipeng; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Introzzi, Gianluca; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansky, Roland; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Yi; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Per; Johns, Kenneth; Johnson, William Joseph; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kajomovitz, Enrique; Kalderon, Charles William; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karamaoun, Andrew; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kasahara, Kota; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katre, Akshay; Katzy, Judith; Kawade, Kentaro; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharlamov, Alexey; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kim, Hee Yeun; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; King, Matthew; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Knapik, Joanna; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Kolb, Mathis; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kukla, Romain; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, J örn Christian; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Lazovich, Tomo; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Liblong, Aaron; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Hao; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loew, Kevin Michael; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan David; Long, Robin Eamonn; Looper, Kristina Anne; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luedtke, Christian; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Maček, Boštjan; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeda, Junpei; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mantoani, Matteo; Mapelli, Livio; March, Luis; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazza, Simone Michele; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer Zu Theenhausen, Hanno; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mistry, Khilesh; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Monden, Ryutaro; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montalbano, Alyssa; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Mori, Daniel; Mori, Tatsuya; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Mortensen, Simon Stark; Morton, Alexander; Morvaj, Ljiljana; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Mueller, Thibaut; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nomachi, Masaharu; Nomidis, Ioannis; Nooney, Tamsin; Norberg, Scarlet; Nordberg, Markus; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onogi, Kouta; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Pan, Yibin; Panagiotopoulou, Evgenia; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Pauly, Thilo; Pearce, James; Pearson, Benjamin; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Penc, Ondrej; Peng, Cong; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrucci, Fabrizio; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Pickering, Mark Andrew; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pin, Arnaud Willy J; Pina, João Antonio; Pinamonti, Michele; Pinfold, James; Pingel, Almut; Pires, Sylvestre; Pirumov, Hayk; Pitt, Michael; Pizio, Caterina; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Prell, Soeren; Price, Darren; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Ptacek, Elizabeth; Puddu, Daniele; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Rauscher, Felix; Rave, Stefan; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reisin, Hernan; Rembser, Christoph; Ren, Huan; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rifki, Othmane; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Jonatan; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Saddique, Asif; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Saha, Puja; Sahinsoy, Merve; Saimpert, Matthias; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Salazar Loyola, Javier Esteban; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sammel, Dirk; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sannino, Mario; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sasaki, Yuichi; Sato, Koji; Sauvage, Gilles; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitt, Stefan; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schwegler, Philipp; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Seliverstov, Dmitry; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyedruhollah; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidebo, Per Edvin; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silver, Yiftah; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinner, Malcolm Bruce; Skottowe, Hugh Philip; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Sokhrannyi, Grygorii; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Bruno; Sopko, Vit; Sorin, Veronica; Sosa, David; Sosebee, Mark; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Spanò, Francesco; Spearman, William Robert; Sperlich, Dennis; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; St Denis, Richard Dante; Stabile, Alberto; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Shuji; Tannenwald, Benjamin Bordy; Tannoury, Nancy; Tapia Araya, Sebastian; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Frank; Taylor, Geoffrey; Taylor, Pierre Thor Elliot; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Temple, Darren; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Ray; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turra, Ruggero; Turvey, Andrew John; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valderanis, Chrysostomos; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloce, Laurelle Maria; Veloso, Filipe; Velz, Thomas; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Tingting; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; Wharton, Andrew Mark; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, Alan; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winter, Benedict Tobias; Wittgen, Matthias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wu, Mengqing; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yakabe, Ryota; Yamada, Miho; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yao, Weiming; Yap, Yee Chinn; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yuen, Stephanie P; Yurkewicz, Adam; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zeng, Qi; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Guangyi; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Lei; Zhou, Li; Zhou, Mingliang; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zwalinski, Lukasz
2015-12-22
A search is presented for pair production of a new heavy quark ($Q$) that decays into a $W$ boson and a light quark ($q$) in the final state where one $W$ boson decays leptonically (to an electron or muon plus a neutrino) and the other $W$ boson decays hadronically. The analysis is performed using an integrated luminosity of 20.3 fb$^{-1}$ of $pp$ collisions at $\\sqrt{s} = 8$ TeV collected by the ATLAS detector at the LHC. No evidence of $Q\\bar{Q}$ production is observed. New chiral quarks with masses below 690 GeV are excluded at 95% confidence level, assuming BR$(Q\\to Wq)=1$. Results are also interpreted in the context of vectorlike quark models, resulting in the limits on the mass of a vectorlike quark in the two-dimensional plane of BR$(Q\\to Wq)$ versus BR$(Q\\to Hq)$.
Domain wall QCD with physical quark masses
Blum, T.; Christ, N.H.; Frison, J.; Garron, N.; Hudspith, R.J.; Izubuchi, T.; Janowski, T.; Jung, C.; Jüttner, A.; Kelly, C.; Kenway, R.D.; Lehner, C.; Marinkovic, M.; Mawhinney, R.D.; McGlynn, G.; Murphy, D.J.; Ohta, S.; Portelli, A.; Sachrajda, C.T.; Soni, A.
2016-01-01
We present results for several light hadronic quantities ($f_\\pi$, $f_K$, $B_K$, $m_{ud}$, $m_s$, $t_0^{1/2}$, $w_0$) obtained from simulations of 2+1 flavor domain wall lattice QCD with large physical volumes and nearly-physical pion masses at two lattice spacings. We perform a short, O(3)%, extrapolation in pion mass to the physical values by combining our new data in a simultaneous chiral/continuum `global fit' with a number of other ensembles with heavier pion masses. We use the physical values of $m_\\pi$, $m_K$ and $m_\\Omega$ to determine the two quark masses and the scale - all other quantities are outputs from our simulations. We obtain results with sub-percent statistical errors and negligible chiral and finite-volume systematics for these light hadronic quantities, including: $f_\\pi$ = 130.2(9) MeV; $f_K$ = 155.5(8) MeV; the average up/down quark mass and strange quark mass in the $\\bar {\\rm MS}$ scheme at 3 GeV, 2.997(49) and 81.64(1.17) MeV respectively; and the neutral kaon mixing parameter, $B_K$...
The good, the bad, and the baryon
International Nuclear Information System (INIS)
Ball, R.D.
1990-01-01
We describe the incorporation of baryons into an effective theory of QCD at low energies. The baryon is not a Skyrmion, rather it consists of three valence quarks bound by effective gluon exchanges, enveloped in a meson cloud, which may possibly take the form of a chiral soliton. Some of the physical implications of these results are also discussed. (orig.)
B→D*lν and B→Dlν form factors in staggered chiral perturbation theory
International Nuclear Information System (INIS)
Laiho, Jack; Water, Ruth S. van de
2006-01-01
We calculate the B→D and B→D* form factors at zero recoil in staggered chiral perturbation theory. We consider heavy-light mesons in which only the light (u, d, or s) quark is staggered; current lattice simulations generally use a highly improved action such as the Fermilab or nonrelativistic QCD action for the heavy (b or c) quark. We work to lowest nontrivial order in the heavy-quark expansion and to one-loop order in the chiral expansion. We present results for a partially quenched theory with three sea quarks in which there are no mass degeneracies (the ''1+1+1'' theory) and for a partially quenched theory in which the u and d sea quark masses are equal (the ''2+1'' theory). We also present results for full (2+1) QCD, along with a numerical estimate of the size of staggered discretization errors. Finally, we calculate the finite volume corrections to the form factors and estimate their numerical size in current lattice simulations
Solitons in one-dimensional antiferromagnetic chains
International Nuclear Information System (INIS)
Pires, A.S.T.; Talim, S.L.; Costa, B.V.
1989-01-01
We study the quantum-statistical mechanics, at low temperatures, of a one-dimensional antiferromagnetic Heisenberg model with two anisotropies. In the weak-coupling limit we determine the temperature dependences of the soliton energy and the soliton density. We have found that the leading correction to the sine-Gordon (SG) expression for the soliton density and the quantum soliton energy comes from the out-of-plane magnon mode, not present in the pure SG model. We also show that when an external magnetic field is applied, the chain supports a new type of kink, where the sublattices rotate in opposite directions
International Nuclear Information System (INIS)
Dorokhov, A.E.; Kanokov, Z.; Musakhanov, M.M.; Rakhimov, A.M.
1989-01-01
Pion production on a nucleon is studied in the chiral bag model (CBM). A CBM version is investigated in which the pions get into the bag and interact with quarks in a pseudovector way in the entire volume. Charged pion photoproduction amplitudes are found taking into account the recoil nucleon motion effects. Angular and energy distributions of charged pions, polarization of the recoil nucleon, multipoles are calculated. The recoil effects are shon to give an additional contribution to the static approximation of order of 10-20%. At bag radius value R=1 in the calculations are consistent with the experimental data
International Nuclear Information System (INIS)
Kiknadze, N.A.; Khelashvili, A.A.
1990-01-01
The problem on stability of classical soliton solutions is studied from the unique point of view: the Legendre condition - necessary condition of existence of weak local minimum for energy functional (term soliton is used here in the wide sense) is used. Limits to parameters of the model Lagrangians are obtained; it is shown that there is no soliton stabilization in some of them despite the phenomenological achievements. The Jacoby sufficient condition is discussed
Scalar resonances as two-quark states
International Nuclear Information System (INIS)
Shabalin, E.P.
1984-01-01
On the base of the theory with U(3)xU(3) symmetric chiral Lagrangian the properties of the two-quark scalar mesons are considered. It is shown, that the scalar resonances delta (980) and K(1240) may be treated as the p-wave states of anti qq system. The properties of the isovector and strange scalar mesons, obtained as a propetrties of the two-quark states, turn out to be very close to the properties of the isovector scalar resonance delta (980) and strange resonance K(1240)
Hadronic Lorentz violation in chiral perturbation theory including the coupling to external fields
Kamand, Rasha; Altschul, Brett; Schindler, Matthias R.
2018-05-01
If any violation of Lorentz symmetry exists in the hadron sector, its ultimate origins must lie at the quark level. We continue the analysis of how the theories at these two levels are connected, using chiral perturbation theory. Considering a 2-flavor quark theory, with dimension-4 operators that break Lorentz symmetry, we derive a low-energy theory of pions and nucleons that is invariant under local chiral transformations and includes the coupling to external fields. The pure meson and baryon sectors, as well as the couplings between them and the couplings to external electromagnetic and weak gauge fields, contain forms of Lorentz violation which depend on linear combinations of quark-level coefficients. In particular, at leading order the electromagnetic couplings depend on the very same combinations as appear in the free particle propagators. This means that observations of electromagnetic processes involving hadrons—such as vacuum Cerenkov radiation, which may be allowed in Lorentz-violating theories—can only reliably constrain certain particular combinations of quark coefficients.
Chiral pion dynamics for spherical nucleon bags
International Nuclear Information System (INIS)
Vento, V.; Rho, M.; Nyman, E.M.; Jun, J.H.; Brown, G.E.; CEA Centre d'Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette
1980-01-01
A chirally symmetric quark-bag model for the nucleon is obtained by introducing an explicit, classical, pion field exterior to the bag. The coupling at the bag surface is determined by the requirement of a conserved axial-vector current. The pion field satisfies equations of motion corresponding to the non-linear sigma-model. We study on this paper the simplified case where the bag and the pion field are spherically symmetric. Corrections due to gluon exchange between the quarks are ignored along with other interactions which split the N- and Δ-masses. The equations of motion for the pion field are solved and we find a substantial pion pressure at the bag surface, along with an attractive contribution to the nucleon self-energy. The total energy of the system, bag plus meson cloud, turns out to be approximately Msub(n)c 2 for a wide range of bag radii, from 1.5 fm down to about 0.5 fm. Introduction of a form factor for the pion would extend the range of possible radii to even smaller values. We propose that the bag with the smallest allowed radius be identified with the 'little bag' discussed before. One surprising result of the paper is that as long as one restricts to spherically symmetric bags, restoring chiral symmetry to the bag model makes the axial-vector current coupling constant gsub(A) to be always too large compared with the experimental value for any bag radius, suggesting a deviation from spherical symmetry for the intrinsic bag wave functions of the 'ground-state' hadrons. (orig.)
A solution to the rho-π puzzle: Spontaneously broken symmetries of the quark model
International Nuclear Information System (INIS)
Caldi, D.G.; Pagels, H.
1976-01-01
This article proposes a solution to the long-standing rho-π puzzle: How can the rho and π be members of a quark model U(6) 36 and the π be a Nambu-Goldstone boson satisfying partial conservation of the axial-vector current (PCAC) Our solution to the puzzle requires a revision of conventional concepts regarding the vector mesons rho, ω, K*, and phi. Just as the π is a Goldstone state, a collective excitation of the Nambu--Jona-Lasinio type, transforming as a member of the (3, 3) + (3, 3) representation of the chiral SU(3) x SU(3) group, so also the rho transforms like (3, 3) + (3, 3) and is also a collective state, a ''dormant'' Goldstone boson that is a true Goldstone boson in the static chiral U(6) x U(6) limit. The static chiral U(6) x U(6) is to be spontaneously broken to static U(6) in the vacuum. Relativisitc effects provide for U(6) breaking and a massive rho. This viewpoint has many consequences. Vector-meson dominance is a consequence of spontaneously broken chiral symmetry: the mechanism that couples the axial-vector current to the π couples the vector current to the rho. The transition rate is calculated as γ/sub rho/ -1 = f/sub pi//m/sub rho/ in rough agreement with experiment. This picture requires soft rho's to decouple. The chiral partner of the rho is not the A 1 but the B (1235). The experimental absence of the A 1 is no longer a theoretical embarrassment in this scheme. As the analog of PCAC for the pion we establish a tensor-field identity for the rho meson in which the rho is interpreted as a dormant Goldstone state. The decays delta → eta + π, B → ω + π, epsilon → 2π are estimated and are found to be in agreement with the observed rates. A static U(6) x U(6) generalization of the Σ model is presented with the π, rho, sigma, B in the (6, 6) + (6, 6) representation. The rho emerges as a dormant Goldstone boson in this model
Goldstone bosons in a crystalline chiral phase
International Nuclear Information System (INIS)
Schramm, Marco
2017-01-01
The phase diagram of strong interaction matter is expected to exhibit a rich structure. Different models have shown, that crystalline phases with a spatially varying chiral condensate can occur in the regime of low temperatures and moderate densities, where they replace the first-order phase transition found for spatially constant order parameters. We investigate this inhomogeneous phase, where in addition to the chiral symmetry, translational and rotational symmetry are broken as well, in a two flavor Nambu--Jona-Lasinio model. The main goal of this work is to describe the Goldstone bosons in this phase, massless excitations that occur for spontaneously broken symmetries. We take one of the simplest possible modulations, the chiral density wave, and show how to derive the quark propagator of the theory analytically, by means of transformations in chiral and momentum space. We apply this to a test case for the gap equation. We show the derivation of Nambu-Goldstone modes in the inhomogeneous phase and find, that for our case only three different modes have to be taken into account. We proceed to calculate the Goldstone boson related to the breaking of spatial symmetry, which can be related to the neutral pion. By evaluating a Bethe-Salpeter equation, we can show, that we have indeed found a Goldstone boson and give its dispersion relation in terms of momenta perpendicular, as well as parallel to the mass modulation.
Goldstone bosons in a crystalline chiral phase
Energy Technology Data Exchange (ETDEWEB)
Schramm, Marco
2017-07-24
The phase diagram of strong interaction matter is expected to exhibit a rich structure. Different models have shown, that crystalline phases with a spatially varying chiral condensate can occur in the regime of low temperatures and moderate densities, where they replace the first-order phase transition found for spatially constant order parameters. We investigate this inhomogeneous phase, where in addition to the chiral symmetry, translational and rotational symmetry are broken as well, in a two flavor Nambu--Jona-Lasinio model. The main goal of this work is to describe the Goldstone bosons in this phase, massless excitations that occur for spontaneously broken symmetries. We take one of the simplest possible modulations, the chiral density wave, and show how to derive the quark propagator of the theory analytically, by means of transformations in chiral and momentum space. We apply this to a test case for the gap equation. We show the derivation of Nambu-Goldstone modes in the inhomogeneous phase and find, that for our case only three different modes have to be taken into account. We proceed to calculate the Goldstone boson related to the breaking of spatial symmetry, which can be related to the neutral pion. By evaluating a Bethe-Salpeter equation, we can show, that we have indeed found a Goldstone boson and give its dispersion relation in terms of momenta perpendicular, as well as parallel to the mass modulation.
Non-ladder extended renormalization group analysis of the dynamical chiral symmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Aoki, Ken-Ichi; Takagi, Kaoru; Terao, Haruhiko; Tomoyose, Masashi [Kanazawa Univ., Inst. for Theoretical Physics, Kanazawa, Ishikawa (Japan)
2000-04-01
The order parameters of dynamical chiral symmetry breaking in QCD, the dynamical mass of quarks and the chiral condensates, are evaluated by numerically solving the non-perturbative renormalization group (NPRG) equations. We employ an approximation scheme beyond 'the ladder', that is, beyond the (improved) ladder Schwinger-Dyson equations. The chiral condensates are enhanced in comparison with the ladder approximation, which is phenomenologically favorable. The gauge dependence of the order parameters is reduced significantly in this scheme. (author)
Non-ladder extended renormalization group analysis of the dynamical chiral symmetry breaking
International Nuclear Information System (INIS)
Aoki, Ken-Ichi; Takagi, Kaoru; Terao, Haruhiko; Tomoyose, Masashi
2000-01-01
The order parameters of dynamical chiral symmetry breaking in QCD, the dynamical mass of quarks and the chiral condensates, are evaluated by numerically solving the non-perturbative renormalization group (NPRG) equations. We employ an approximation scheme beyond 'the ladder', that is, beyond the (improved) ladder Schwinger-Dyson equations. The chiral condensates are enhanced in comparison with the ladder approximation, which is phenomenologically favorable. The gauge dependence of the order parameters is reduced significantly in this scheme. (author)
Nuclear matter descriptions including quark structure of the hadrons
International Nuclear Information System (INIS)
Huguet, R.
2008-07-01
It is nowadays well established that nucleons are composite objects made of quarks and gluons, whose interactions are described by Quantum chromodynamics (QCD). However, because of the non-perturbative character of QCD at the energies of nuclear physics, a description of atomic nuclei starting from quarks and gluons is still not available. A possible alternative is to construct effective field theories based on hadronic degrees of freedom, in which the interaction is constrained by QCD. In this framework, we have constructed descriptions of infinite nuclear matter in relativistic mean field theories taking into account the quark structure of hadrons. In a first approach, the in medium modifications of mesons properties is dynamically obtained in a Nambu-Jona-Lasinio (NJL) quark model. This modification is taken into account in a relativistic mean field theory based on a meson exchange interaction between nucleons. The in-medium modification of mesons masses and the properties of infinite nuclear matter have been studied. In a second approach, the long and short range contributions to the in-medium modification of the nucleon are determined. The short range part is obtained in a NJL quark model of the nucleon. The long range part, related to pions exchanges between nucleons, has been determined in the framework of Chiral Perturbation theory. These modifications have been used to constrain the couplings of a point coupling relativistic mean field model. A realistic description of the saturation properties of nuclear matter is obtained. (author)
Geometric solitons of Hamiltonian flows on manifolds
Energy Technology Data Exchange (ETDEWEB)
Song, Chong, E-mail: songchong@xmu.edu.cn [School of Mathematical Sciences, Xiamen University, Xiamen 361005 (China); Sun, Xiaowei, E-mail: sunxw@cufe.edu.cn [School of Applied Mathematics, Central University of Finance and Economics, Beijing 100081 (China); Wang, Youde, E-mail: wyd@math.ac.cn [Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190 (China)
2013-12-15
It is well-known that the LIE (Locally Induction Equation) admit soliton-type solutions and same soliton solutions arise from different and apparently irrelevant physical models. By comparing the solitons of LIE and Killing magnetic geodesics, we observe that these solitons are essentially decided by two families of isometries of the domain and the target space, respectively. With this insight, we propose the new concept of geometric solitons of Hamiltonian flows on manifolds, such as geometric Schrödinger flows and KdV flows for maps. Moreover, we give several examples of geometric solitons of the Schrödinger flow and geometric KdV flow, including magnetic curves as geometric Schrödinger solitons and explicit geometric KdV solitons on surfaces of revolution.
Probing new physics at the LHC: searches for heavy top-like quarks with the ATLAS experiment
Succurro, Antonella; Casado Lechuga, María Pilar
Is our Standard Model (SM) of the fundamental particle interactions complete? Apparently, the answer is “no”. Many theories have been proposed to explain what is currently not understood, like the nature of Dark Matter, or the reason why the Higgs boson is so light. Now that the Large Hadron Collider (LHC) at CERN is fully operational, it is possible for experiments like ATLAS to explore very high-energy regimes where new physics can be probed. The work presented in this dissertation consists of two analyses aimed at the discovery (or exclusion) of a signal from a new particle: a quark similar to the top quark (the heaviest particle of the Standard Model) but with a larger mass. This new “top-like” quark could be a simple replica of the SM top quark, just with higher mass, i.e. a chiral fourth-generation up-type quark, or it could have exotic features. The latter hypothesis is particularly interesting as many “beyond-Standard Model” theories predict new heavy so-called vector-like quarks. Both sea...
Non-perturbative studies of QCD at small quark masses
Energy Technology Data Exchange (ETDEWEB)
Wennekers, J.
2006-07-15
We investigate the quenched approximation of lattice QCD with numerical simulations of Ginsparg-Wilson fermions, which are a fermion discretisation with exact chiral symmetry. We compute the renormalisation constant of the scalar density, which allows to extrapolate the chiral condensate to the continuum limit. Furthermore we match lattice results of matrix elements describing hadronic kaon decays to Chiral Perturbation Theory in finite volume and at almost vanishing quark mass. The resulting low-energy constants in the considered SU(4)-flavour symmetric case indicate a substantial contribution of low scale QCD effects to the {delta}I = 1/2 rule. (Orig.)
Finite nuclei in relativistic models with a light chiral scalar meson
International Nuclear Information System (INIS)
Serot, B.D.; Furnstahl, R.J.
1993-01-01
Relativistic chiral models with a light scalar, meson appear to provide an economical marriage of successful relativistic mean-field theories and chiral symmetry. In these models, the scalar meson serves as both the chiral partner of the pion and the mediator of the intermediate-range nucleon-nucleon (NN) attraction. However, while some of these models can reproduce the empirical nuclear matter saturation point, they fail to reproduce observed properties of finite nuclei, such as spin-orbit splittings, shell structure, charge densities, and surface energetics. There deficiencies imply that this realization of chiral symmetry is incorrect. An alternative scenario for chiral hadronic models, which features a heavy chiral scalar and dynamical generation of the NN attraction, is discussed
Low energy constituent quark and pion effective couplings in a weak external magnetic field
Braghin, Fábio L.
2018-03-01
An effective model with pions and constituent quarks in the presence of a weak external background electromagnetic field is derived by starting from a dressed one gluon exchange quark-quark interaction. By applying the auxiliary field and background field methods, the structureless pion limit is considered to extract effective pion and constituent quark couplings in the presence of a weak magnetic field. The leading terms of a large quark and gluon masses expansion are obtained by resolving effective coupling constants which turn out to depend on a weak magnetic field. Two pion field definitions are considered for that. Several relations between the effective coupling constants and parameters can be derived exactly or in the limit of very large quark mass at zero and weak constant magnetic field. Among these ratios, the Gell-Mann-Oakes-Renner and the quark level Goldberger-Treiman relations are obtained. In addition to that, in the pion sector, the leading terms of Chiral Perturbation Theory coupled to the electromagnetic field are recovered. Some numerical estimates are provided for the effective coupling constants and parameters.
Hyperon-nucleon interaction in the quark cluster model
International Nuclear Information System (INIS)
Straub, U.; Zhang Zongye; Braeuer, K.; Faessler, A.; Khadkikar, S.B.; Luebeck, G.
1988-01-01
The lambda-nucleon and sigma-nucleon interaction is described in the nonrelativistic quark cluster model. The SU(3) flavor symmetry breaking due to the different quark masses is taken into account, i.e. different wavefunctions for the light (up, down) and heavy (strange) quarks are used in flavor and orbital space. The six-quark wavefunction is fully antisymmetrized. The model hamiltonian contains gluon exchange, pseudoscalar meson exchange and a phenomenological σ-meson exchange. The six-quark scattering problem is solved within the resonating group method. The experimental lambda-nucleon and sigma-nucleon cross sections are well reproduced. (orig.)
Bifurcation of the Quark Self-Energy: Infra-Red and Ultra-Violet Cut-Offs
Atkinson, D.; Johnson, P. W.
1987-01-01
The quark self-energy in massless QCD is studied in the approximation that both the quark-gluon vertex and the gluon propagator remain bare. It is shown that chiral invariance is not spontaneously broken at a critical coupling λc>0, unless both infrared and ultraviolet cutoffs are introduced.
Light quark correlators in a mixed-action setup
Energy Technology Data Exchange (ETDEWEB)
Bernardoni, Fabio [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Garron, Nicolas [Edinburgh Univ. (United Kingdom). SUPA, School of Physics; Hernandez, Pilar [CSIC-Univ. de Valencia (Spain). Inst. de Fisica Corpuscular; Necco, Silvia [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Pena, Carlos [Univ. Autonoma de Madrid (Spain). Dept. de Fisica Teorica y Inst. de Fisica Teorica UAM/CSIC
2011-11-15
We report our progress in simulating Neuberger valence fermions on N{sub f}=2 Wilson O(a)-improved sea quarks. We compute correlators with valence quark masses both in the p- and in the e-regime, and we match the results with the predictions of the Chiral Effective Theory in the mixed regime. This allows us to extract the Low Energy Couplings (LECs) of the N{sub f}=2 theory and to test the validity of the approach. (orig.)
Chiral corrections to the Adler-Weisberger sum rule
Beane, Silas R.; Klco, Natalie
2016-12-01
The Adler-Weisberger sum rule for the nucleon axial-vector charge, gA , offers a unique signature of chiral symmetry and its breaking in QCD. Its derivation relies on both algebraic aspects of chiral symmetry, which guarantee the convergence of the sum rule, and dynamical aspects of chiral symmetry breaking—as exploited using chiral perturbation theory—which allow the rigorous inclusion of explicit chiral symmetry breaking effects due to light-quark masses. The original derivations obtained the sum rule in the chiral limit and, without the benefit of chiral perturbation theory, made various attempts at extrapolating to nonvanishing pion masses. In this paper, the leading, universal, chiral corrections to the chiral-limit sum rule are obtained. Using PDG data, a recent parametrization of the pion-nucleon total cross sections in the resonance region given by the SAID group, as well as recent Roy-Steiner equation determinations of subthreshold amplitudes, threshold parameters, and correlated low-energy constants, the Adler-Weisberger sum rule is confronted with experimental data. With uncertainty estimates associated with the cross-section parametrization, the Goldberger-Treimann discrepancy, and the truncation of the sum rule at O (Mπ4) in the chiral expansion, this work finds gA=1.248 ±0.010 ±0.007 ±0.013 .
A transport model with color confinement
International Nuclear Information System (INIS)
Loh, S.
1997-01-01
First the mostly important properties of QCD are dealt with. It is made plausible, how the QCD vacuum generates a screening of color charges and is by this responsible for the quark confinement in color singlets. in the following the behaviour of classical color charges and color fields is studied and it is concluded that by this approximation, the neglection of quantum-mechanical fluctuation, the quark confinement cannot be explained, because the mean-field approximation leads to a screening of the color charges. Motivated by this result the Friedberg-Lee soliton model is presented, in which the the color confinement and all further nonperturbative QCD effects are phenomenologically modelled by means of a scalar field. Thereafter a derivation of the transport equations for quarks in the framework of the Wigner-function is presented. An extension of the equation to the Friedberg-Lee model is explained. As results the ground-state properties of the model are studied. Mesonic and baryonic ground-state solutions (soliton solutions) of the equations are constructed, whereby the constituents are both light quarks and heavy quarks. Furthermore the color coupling constant of QCD is fixed by means of the string tension by dynamical separation of the quarks of the meson. The flux tubes formed dynamically in this way are applied, in order to study the interaction of two strings and to calculate a string-string potential. Excited states of the meson (isovectorial modes) are presented as well as the influence of the color confinement on the quark motion. Finally the dynamical formation and the break-up of a string by the production of light and heavy quark pairs is described
Preface to the Special Issue: Chiral Symmetry in Hadrons and Nuclei
International Nuclear Information System (INIS)
Geng, Lisheng; Meng, Jie; Zhao, Qiang; Zou, Bingsong
2014-01-01
The recent past years have seen a remarkable progress towards a unified description of nonperturbative strong interaction phenomena based on the fundamental theory of the strong interaction, quantum chromodynamics, and effective field theories. The papers collected in this special issue focus on the recent progress in hadron and nuclear physics related to the chiral symmetry. They are written based on presentations at the Seventh International Symposium on Chiral Symmetry in Hadron and Nuclei which took place at Beihang University, Beijing, 27-30 October 2013. The sub-topics discussed in these papers include chiral and heavy-quark spin symmetry; chiral dynamics of few-body hadron systems; chiral symmetry and hadrons in a nuclear medium; chiral dynamics in nucleon-nucleon interaction and atomic nuclei; chiral symmetry in rotating nuclei; hadron structure and interactions; exotic hadrons, heavy flavor hadrons and nuclei; mesonic atoms and nuclei
Numerical evidence of chiral magnetic effect in lattice gauge theory
International Nuclear Information System (INIS)
Buividovich, P. V.; Chernodub, M. N.; Luschevskaya, E. V.; Polikarpov, M. I.
2009-01-01
The chiral magnetic effect is the generation of electric current of quarks along an external magnetic field in the background of topologically nontrivial gluon fields. There is recent evidence that this effect is observed by the STAR Collaboration in heavy-ion collisions at the Relativistic Heavy Ion Collider. In our paper we study qualitative signatures of the chiral magnetic effect using quenched lattice simulations. We find indications that the electric current is indeed enhanced in the direction of the magnetic field both in equilibrium configurations of the quantum gluon fields and in a smooth gluon background with nonzero topological charge. In the confinement phase the magnetic field enhances the local fluctuations of both the electric charge and chiral charge densities. In the deconfinement phase the effects of the magnetic field become smaller, possibly due to thermal screening. Using a simple model of a fireball we obtain a good agreement between our data and experimental results of STAR Collaboration.
Quark confinement and the quark model
International Nuclear Information System (INIS)
Kuti, J.
1977-01-01
The CERN-JINR School of Physics is meant to give young experimental physicists and introduction to the theoretical aspects of recent advances in elementary particle physics. The purpose of the lectures contained in this paper is to discuss recent work on the quark model and its applications to hadron spectroscopy and some high-energy phenomena. (Auth.)
Kaon-Nucleon scattering in a constituent quark model
International Nuclear Information System (INIS)
Lemaire, S.
2002-06-01
We have investigated Kaon-Nucleon (KN) interaction in a constituent quark model in the momentum range for the Kaon between 0 and 1 GeV/c in the laboratory frame. This study has been motivated by the fact that in an approach relying on a boson exchange mechanism the Bonn group was forced, in order to obtain good agreement with I = 0 s-wave phase shifts, to add the exchange of a short range fictitious repulsive scalar meson. This need for repulsion, whose range (∼ 0.2 fm) is smaller than the nucleon radius, clearly shows that the quark substructure of the nucleons and K + mesons cannot be neglected. The Kaon-Nucleon phase shifts are calculated in a quark potential model using the resonating group method (RGM). We have to cope with a five body problem with antisymmetrization with respect to the four ordinary quarks of the Kaon-Nucleon system. One requirement of our approach is that the quark-quark interaction must give a quite good description of the hadron spectra. One goal of the present work aims at determining the influence of a relativistic kinematics, in this constituent quark model, for the calculation of KN phase shifts. We have also investigated s, p, d, f, g waves KN elastic phase shifts and we have included a spin-orbit term in the quark-quark interaction. Then we have studied the influence of medium and long range exchange mechanism in the quark quark interaction on KN phase shifts. (author)
Wave-particle duality in a quark model
International Nuclear Information System (INIS)
Gudder, S.P.
1984-01-01
A quark model based on finite-dimensional quantum mechanics is presented. Observables associated with color, flavor, charge, and spin are considered. Using these observables, quark and baryon Hamiltonians are constructed. Wave-particle dualities in this model are pointed out. (Auth.)
Chiral filter, axial charges and Gamow-Teller strengths
International Nuclear Information System (INIS)
Rho, M.
1983-09-01
The different ways that nuclear matter responds to the weak axial-vector current are interpreted in terms of modification of the ''vacuum'' in baryon-rich environments. The notion of ''chiral filter'' is introduced. Use of a ward identity is suggested. The Gamow-Teller quenching and the enhanced axial charge in O + O - transitions follow from this. I also discuss briefly possible relevance of the nucleon as a topological soliton configuration to the global property of nuclear axial response functions
Chiral algebras in Landau-Ginzburg models
Dedushenko, Mykola
2018-03-01
Chiral algebras in the cohomology of the {\\overline{Q}}+ supercharge of two-dimensional N=(0,2) theories on flat spacetime are discussed. Using the supercurrent multiplet, we show that the answer is renormalization group invariant for theories with an R-symmetry. For N=(0,2) Landau-Ginzburg models, the chiral algebra is determined by the operator equations of motion, which preserve their classical form, and quantum renormalization of composite operators. We study these theories and then specialize to the N=(2,2) models and consider some examples.
Electromagnetic properties of baryons in the constituent quark model
International Nuclear Information System (INIS)
Warns, M.
1992-01-01
The electromagnetic properties of baryons are investigated in the framework of a relativized quark model. The model includes beyond the usual single quark transition ansatz relativistic effects due to the strong interaction and confinement forces between the quarks. Furthermore the center-of-mass motion of the three-quark system is separated off in a Lorentz-invariant way. All relativistic correction terms are obtained by expanding the corresponding relativistic expressions in powers of the quark velocity. In this way recoil effects on the electromagnetic interaction between the photon and the baryon could be explicitly studied. Using the harmonic oscillator wavefunctions with the configuration mixing from the Isgur-Karl model, the form factors of the nucleon and the electromagnetic transition amplitudes both for longitudinally and transversely polarized photons are calculated for the most important baryon resonances. An extension to baryons involving strange quarks is also considered. Comparisons are made with the results of the nonrelativistic quark model and with some other approaches. (orig.)
Need for spontaneous breakdown of chiral symmetry
International Nuclear Information System (INIS)
Salomone, A.; Schechter, J.; Tudron, T.
1981-01-01
The question of whether the chiral symmetry of the theory of strong interactions (with massless quarks) is required to be spontaneously broken is examined in the framework of a previously discussed effective Lagrangian for quantum chromodynamics. The assumption that physical masses of the theory be finite leads in a very direct way to the necessity of spontaneous breakdown. This result holds for all N/sub F/> or =2, where N/sub F/ is the number of different flavors of light quarks. The atypical cases N/sub F/ = 1,2 are discussed separately
Dynamical simulation of a linear sigma model near the critical point
Energy Technology Data Exchange (ETDEWEB)
Wesp, Christian; Meistrenko, Alex; Greiner, Carsten [Institut fuer Theoretische Physik, Goethe-Universitaet Frankfurt, Max-von-Laue-Strasse 1, D-60438 Frankfurt (Germany); Hees, Hendrik van [Frankfurt Institute for Advanced Studies, Ruth-Moufang-Strasse 1, D-60438 Frankfurt (Germany)
2014-07-01
The intention of this study is the search for signatures of the chiral phase transition. To investigate the impact of fluctuations, e.g. of the baryon number, on the transition or a critical point, the linear sigma model is treated in a dynamical 3+1D numerical simulation. Chiral fields are approximated as classical fields, quarks are described by quasi particles in a Vlasov equation. Additional dynamic is implemented by quark-quark and quark-sigma-field interaction. For a consistent description of field-particle interactions, a new Monte-Carlo-Langevin-like formalism has been developed and is discussed.
Star-Triangle Relation of the Chiral Potts Model Revisited
Horibe, M.; Shigemoto, K.
2001-01-01
We give the simple proof of the star-triangle relation of the chiral Potts model. We also give the constructive way to understand the star-triangle relation of the chiral Potts model, which may give the hint to give the new integrable models.
Gauging Non-local Quark Models
International Nuclear Information System (INIS)
Broniowski, W.
1999-09-01
The gauge effective quark model with non-local interactions is considered. It is shown how this approach regularize the theory in such a way that the anomalies are preserved and charges are properly quantized. With non-local interactions the effective action is finite to all orders in the loop expansion and there is no need to introduce the quark momentum cut-off parameter
Currents, charges, and canonical structure of pseudodual chiral models
International Nuclear Information System (INIS)
Curtright, T.; Zachos, C.
1994-01-01
We discuss the pseudodual chiral model to illustrate a class of two-dimensional theories which have an infinite number of conservation laws but allow particle production, at variance with naive expectations. We describe the symmetries of the pseudodual model, both local and nonlocal, as transmutations of the symmetries of the usual chiral model. We refine the conventional algorithm to more efficiently produce the nonlocal symmetries of the model, and we discuss the complete local current algebra for the pseudodual theory. We also exhibit the canonical transformation which connects the usual chiral model to its fully equivalent dual, further distinguishing the pseudodual theory
Energy Technology Data Exchange (ETDEWEB)
Garron, Nicolas [Theoretical Physics Division, Department of Mathematical Sciences, University of Liverpool,Brownlow Hill, Liverpool, L69 3BX (United Kingdom); Hudspith, Renwick J. [Department of Physics and Astronomy, York University,4700 Keele Street, Toronto, Ontario, M3J 1P3 (Canada); Lytle, Andrew T. [SUPA, School of Physics and Astronomy, University of Glasgow,University Avenue, Glasgow, G12 8QQ (United Kingdom); Collaboration: The RBC/UKQCD collaboration
2016-11-02
We compute the hadronic matrix elements of the four-quark operators relevant for K{sup 0}−K̄{sup 0} mixing beyond the Standard Model. Our results are from lattice QCD simulations with n{sub f}=2+1 flavours of domain-wall fermion, which exhibit continuum-like chiral-flavour symmetry. The simulations are performed at two different values of the lattice spacing (a∼0.08 and a∼0.11 fm) and with lightest unitary pion mass ∼300 MeV. For the first time, the full set of relevant four-quark operators is renormalised non-perturbatively through RI-SMOM schemes; a detailed description of the renormalisation procedure is presented in a companion paper. We argue that the intermediate renormalisation scheme is responsible for the discrepancies found by different collaborations. We also study different normalisations and determine the matrix elements of the relevant four-quark operators with a precision of ∼5% or better.
Quark mean field theory and consistency with nuclear matter
International Nuclear Information System (INIS)
Dey, J.; Tomio, L.; Dey, M.; Frederico, T.
1989-01-01
1/N c expansion in QCD (with N c the number of colours) suggests using a potential from meson sector (e.g. Richardson) for baryons. For light quarks a σ field has to be introduced to ensure chiral symmetry breaking ( χ SB). It is found that nuclear matter properties can be used to pin down the χ SB-modelling. All masses, M Ν , m σ , m ω are found to scale with density. The equations are solved self consistently. (author)
Quark model and equivalent local potential
International Nuclear Information System (INIS)
Takeuchi, Sachiko; Shimizu, Kiyotaka
2002-01-01
In this paper, we investigate the short-range repulsion given by the quark cluster model employing an inverse scattering problem. We find that the local potential which reproduces the same phase shifts as those given by the quark cluster model has a strong repulsion at short distances in the NN 1 S 0 channel. There, however, appears an attractive pocket at very short distances due to a rather weak repulsive behavior at very high energy. This repulsion-attractive-pocket structure becomes more manifest in the channel which has an almost forbidden state, ΣN(T=3/2) 3 S 1 . In order to see what kinds of effects are important to reproduce the short-range repulsion in the quark cluster model, we investigate the contribution coming from the one-gluon-exchange potential and the normalization separately. It is clarified that the gluon exchange constructs the short-range repulsion in the NN 1 S 0 while the quark Pauli-blocking effect governs the feature of the repulsive behavior in the ΣN(T=3/2) 3 S 1 channel
A single quark effective potential model
International Nuclear Information System (INIS)
Bodmann, B.E.J.; Vasconcellos, C.A.Z.
1994-01-01
In the present work we construct a radial spherical symmetric single quark potential model for the nucleon, consistent with asymptotic freedom and confinement. The quark mass enters as potential parameter and that way induces indirectly an isospin dependence in the interaction. As a consequence, a contribution to the negative charge square radius of the neutron arises an an effect of the quark core, which simulates an isospin symmetry breaking effect in the nucleon due to strong interaction. (author)
International Nuclear Information System (INIS)
Schröck, M.
2013-01-01
Within the framework of this thesis, the interrelation between the two characteristic phenomena of quantum chromodynamics (QCD), i.e., dynamical chiral symmetry breaking and confinement, is investigated. To this end, we apply lattice gauge field theory techniques and adopt a method to artificially restore the dynamically broken chiral symmetry. The low-mode part of the Dirac eigenspectrum is tied to the dynamical breaking of the chiral symmetry according to the Banks--Casher relation. Utilizing two-flavor dynamical lattice gauge field configurations, we construct valence quark propagators that exclude a variable sized part of the low-mode Dirac spectrum, with the aim of using these as an input for meson and baryon interpolating fields. Subsequently, we explore the behavior of ground and excited states of the low-mode truncated hadrons using the variational analysis method. We look for the existence of confined hadron states and extract effective masses where applicable. Moreover, we explore the evolution of the quark wavefunction renormalization function and the renormalization point invariant mass function of the quark propagator under Dirac low-mode truncation in a gauge fixed setting. Motivated by the necessity of fixing the gauge in the aforementioned study of the quark propagator, we also developed a flexible high performance code for lattice gauge fixing, accelerated by graphic processing units (GPUs) using NVIDIA CUDA (Compute Unified Device Architecture). Lastly, more related but unpublished work on the topic is presented. This includes a study of the locality violation of low-mode truncated Dirac operators, a discussion of the possible extension of the low-mode truncation method to the sea quark sector based on a reweighting scheme, as well as the presentation of an alternative way to restore the dynamically broken chiral symmetry. (author) [de
Bijnens, Johan; Rössler, Thomas
2015-11-01
We present a calculation of the finite volume corrections to meson masses and decay constants in three flavour Partially Quenched Chiral Perturbation Theory (PQChPT) through two-loop order in the chiral expansion for the flavour-charged (or off-diagonal) pseudoscalar mesons. The analytical results are obtained for three sea quark flavours with one, two or three different masses. We reproduce the known infinite volume results and the finite volume results in the unquenched case. The calculation has been performed using the supersymmetric formulation of PQChPT as well as with a quark flow technique.
Nucleon-nucleon interaction and the quark model
International Nuclear Information System (INIS)
Faessler, A.
1985-01-01
The NN phase shifts are calculated using the quark model with a QCD inspired quark-quark force. The short range part of the NN force is given by quark and gluon exchange. The long range part is described by π and σ-meson exchange. The data fitted in the model are five values connected with three quarks only: the nucleon mass, the Δ mass, the root mean square radius of the charge distribution of the proton including the pion cloud, the π-N and the σ-N coupling constant at zero momentum transfer. The 1 S and 3 S phase shifts are nicely reproduced. The short range repulsion is decisively influenced by the node in the [42] r relative wave function. Very important is the colour magnetic quark-quark force which enlarges the [42] r admixture. In the OBEP's the short range repulsion is connected with the exchange of the ω-meson. But to reproduce the short range repulsion one had to blow up the ω-N coupling constant by a factor 2 to 3 compared to flavour SU 3 . With quark and gluon exchange the best fit to the ω-N coupling constant lies close to the SU 3 flavour value. This fact strongly supports the notion that the real nature of the short range repulsion of the NN interaction have been found
Chiral condensate at nonzero chemical potential in the microscopic limit of QCD
International Nuclear Information System (INIS)
Osborn, J. C.; Splittorff, K.; Verbaarschot, J. J. M.
2008-01-01
The chiral condensate in QCD at zero temperature does not depend on the quark chemical potential (up to one-third the nucleon mass), whereas the spectral density of the Dirac operator shows a strong dependence on the chemical potential. The cancellations which make this possible also occur on the microscopic scale, where they can be investigated by means of a random matrix model. We show that they can be understood in terms of orthogonality properties of orthogonal polynomials. In the strong non-Hermiticity limit they are related to integrability properties of the spectral density. As a by-product we find exact analytical expressions for the partially quenched chiral condensate in the microscopic domain at nonzero chemical potential.
International Nuclear Information System (INIS)
Cichy, K.; Jansen, K.; Shindler, A.; Forschungszentrum Juelich; Forschungszentrum Juelich
2013-12-01
We apply the spectral projector method, recently introduced by Giusti and Luescher, to compute the chiral condensate using N f =2 and N f =2+1+1 dynamical flavors of maximally twisted mass fermions. We present our results for several quark masses at three different lattice spacings which allows us to perform the chiral and continuum extrapolations. In addition we report our analysis on the O(a) improvement of the chiral condensate for twisted mass fermions. We also study the effect of the dynamical strange and charm quarks by comparing our results for N f =2 and N f =2+1+1 dynamical flavors.
On modelling adiabatic N-soliton interactions and perturbations. Effects of external potentials
International Nuclear Information System (INIS)
Gerdjikov, V.; Baizakov, B.
2005-01-01
We analyze several perturbed versions of the complex Toda chain (CTC) in an attempt to describe the adiabatic N-soliton train interactions of the perturbed nonlinear Schrodinger equation (NLS). Particular types of perturbations, including quadratic and periodic external potentials are treated by both analytical and numerical means. We show that the perturbed CTC model provides a good description for the N-soliton interactions in the presence of a weak external potential. (authors)
Cheshire Cat scenario in A 3+1 dimensional hybrid chiral bag
International Nuclear Information System (INIS)
Francia, M. De; Falomir, H.; Santangelo, E.M.
1995-07-01
The total energy in the two-phase chiral bag model is studied, including the contribution due to the bag (Casimir energy plus energy of the valence quarks), as well as the one coming from the Skyrmion in the external sector. A consistent determination of the parameters of the model and the renormalization constants in the energy is performed. The total energy shows an approximate independence with the bag radius (separation limit between the phases), in agreement with the Cheshire Cat Principle. (author). 21 refs, 3 figs
The Model of Complex Structure of Quark
Liu, Rongwu
2017-09-01
In Quantum Chromodynamics, quark is known as a kind of point-like fundamental particle which carries mass, charge, color, and flavor, strong interaction takes place between quarks by means of exchanging intermediate particles-gluons. An important consequence of this theory is that, strong interaction is a kind of short-range force, and it has the features of ``asymptotic freedom'' and ``quark confinement''. In order to reveal the nature of strong interaction, the ``bag'' model of vacuum and the ``string'' model of string theory were proposed in the context of quantum mechanics, but neither of them can provide a clear interaction mechanism. This article formulates a new mechanism by proposing a model of complex structure of quark, it can be outlined as follows: (1) Quark (as well as electron, etc) is a kind of complex structure, it is composed of fundamental particle (fundamental matter mass and electricity) and fundamental volume field (fundamental matter flavor and color) which exists in the form of limited volume; fundamental particle lies in the center of fundamental volume field, forms the ``nucleus'' of quark. (2) As static electric force, the color field force between quarks has classical form, it is proportional to the square of the color quantity carried by each color field, and inversely proportional to the area of cross section of overlapping color fields which is along force direction, it has the properties of overlap, saturation, non-central, and constant. (3) Any volume field undergoes deformation when interacting with other volume field, the deformation force follows Hooke's law. (4) The phenomena of ``asymptotic freedom'' and ``quark confinement'' are the result of color field force and deformation force.
Directory of Open Access Journals (Sweden)
Rodrigo Cancino L
2007-04-01
Full Text Available En este artículo se presenta un modelo teórico y la simulación computacional correspondiente, que permite analizar los efectos de la propagación de ondas solitónicas en medios biológicos esencialmente quirales. La quiralidad se modela, en este caso, bajo la formulación de Drude, mostrándose los rangos de validez del modelo propuesto. Este modelo considera los efectos no lineales y dispersivos del medio, debido a una dependencia espectral de la señal de entrada y la aproximación de campo cuasi-monocromático, para escribir la ecuación no lineal de Schrödinger y resolverla numéricamente mediante el método espectral de Fourier. Los resultados de nuestras simulaciones muestran el efecto de la variación del factor quiral sobre la impedancia del medio y sobre los coeficientes de transmisión y reflexión. Finalmente se discute, brevemente, la generalización del modelo de Drude para el caso de metamateriales.In this paper a theory model with the corresponding simulations, which permit to analyze the solitonic wave propagation in biological media, is presented. The chirality is modeled as Drude's formulation, showing the validity rank of the model. The model considers nonlinear and dispersive effects due to the spectral dependency of the input signal and the cuasy-monocromatic approach, so as to write the Schrödinger non-linear equation and solving it numerically by means of the spectral Fourier method. The numerical results show the effect of chiral factor variation on the media impedance, transmission and reflection coefficients. Finally, the generalization of the Drude's formulation for the metamaterial case, is briefly discussed.